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Abstract

We go through a short period of history of the beginning caculus (1643-1668) when two
classical curves : the parabola and the Archimede spiral, were implicated. Archimede had
settled some important ideas, first steps to calculus and applyied them to the parabola and
the spiral for evaluating areas. In the 17th century an analogy between these two curves was
of interest, not only for area but also for comparing the arc lengths and many geometers
tried to prove or to generalize this property. All this can be easily explained in the final
notation form of calculus in the Leibnizian manner and the use of polar coordinates.

1 Two curves coming from antiquity : Parabola and Archimede
spiral

In the antiquity mathematics, the curves cut on a cone by a plane were classical objects of study
and Apollonius had given some properties of these conics and a classification in the three types:
Ellipses, including the circle, Parabola and Hyperbolas. Some other curves were described by
compound motions like Hippias quadratrix or Achimede Spiral. This curve is generated by a
right line in uniform rotation around a point O and a uniform move along the line -see (1).
Archimede had given some results on the construction of tangents or the area inside the first
tour of the spiral : one third of the circle centered at O with radius 2π.a if ρ = a.θ is the polar
equation of the spiral. It is the area wiped by the radius vector from t = 0 to t = 2.π.
In Seventeenth century the reading of the work of Archimede was an incitation to generalise
his ideas and methods. It contains important means to calculate length, area and volumes,
particularly the lenghth or area of circle, Parabola and also of his spiral.

This was a source of inspiration for mathematicians to calculate area limited by lines or plane
curves and volumes limited by planes and simple surfaces. Kepler, Galileo, Cavalieri, Gregory of
St Vincent, Guldin and others tried to improve Archimede’s methods and it was the beginning
of the story of Calculus carried to an efficient mean by Newton and Leibniz later about 1680-90.
Cavalieri in Geometria indivisibilibus 1635 (1) used his new methods to evaluate the area in-
side the first turn of the Archimede spiral and reduced to the area limited by lines and a parabola.

The equation of these curves in orthogonal coordinates and polar coordinates are :

y2 = 2.a.x Parabola .
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ρ = a.θ archimede spiral .

Figure 1: Archimede’s method for inside area of his spiral

Figure 2: Cavalieri’s method for outer Area of 1st turn of Archimede spiral

2 Mersenne and his friends

Marin Mersenne (1588-1648) joined Minim Friars in 1611 and was from 1618 to his death lec-
turer at the ”Couvent des minimes” of the Place royale (today ”place des Vosges”) in Paris.
He travelled in different countries : Low countries (1629-1630), East of France (1639), Provence
and Italia (1644-1645), provinces of the west et du South-west (1646-1647). His correspondance,
in which he suggest many interessant questions (the cycloid, ”la roulette” for example), that is
an excellent stimulation for activity of savants and help publications of new ideas and scientific
works.
SA Shirali indicates in (3) :”By about 1620 he had also decided for himself that alongside reli-
gious studies he would devote his time to science and mathematics. This interest in combination
with his meetings with scholars soon gave rise to an extraordinary and unprecedented tradition,
in which he began to keep contacts with a number of scientists and mathematicians (including
some whom he never met) : Descartes, Fermat, Etienne Pascal and Blaise Pascal, Roberval, and
many others. He set up meetings with them in which they would discuss their work.
This informal academy began to be known as Academie Mersenne. At one such meeting
Mersenne persuaded Roberval to work on the cycloid, and this brought forth rich dividends” ...
”Mersenne’s letters run into thousands of pages. After his death in 1648, letters were found in
his cell from seventy eight different correspondents in several countries. Read chronologically,
they offer a very insightful glimpse at how mathematics and mechanics were evolving during this
period of ferment. It is no exaggeration to say that he was the creator of a scientific academy
that stretched across the length and breadth of Europe.”
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After 1635, he carried out his project to organize collective work and animated the academia
parisensis. This ”confrerie” became an institution and later Colbert en 1666 created the French
science academy.
Mersenne awes his reputation to his role of facilitator of scientific life in the 1630 - 1640 years.
And Hobbes described him as ”the one around who turned as around an axis each star of the
science each on his own orbite”.

3 A meeting in the cloister of convent ”les Minimes” Paris in
December 1642

In the winter 1642-43 Mersenne encountered Hobbes and Roberval, who had recently found the
area between an arch of the cycloid and its base-line, at his monastery ”des Minimes” in Paris.
And they talked of the arc length of the parabola and spiral.
In fact the analogy Parabola-Spiral is composed of two parts :

1 - A relation between areas under the parabola and the sector between two vectors radii
and the spiral with factor As = 1

2 .Ap. In a way this was proved by Archimede and Cavalieri.

2 - An equality of arc length between two peer points on the parabola and on the spi-
ral.

Hobbes was in Paris during the civil war from 1640 until 1651, because he feared for his safety.
Shortly after completing The Elements of Law, he fled to Paris, where he rejoined Mersennes
circle and made contact with other exiles from England.
In the ”Cambridge companion to Hobbes 1996” we read under the pen of Hardy Grant (6) ”...At
some time during the winter 1642-43 Hobbes paid a visit to Marin Mersenne at the latter’s Min-
ime convent in Paris. Present also were Roberval and an unnamed fourth person. Mersenne,
intellectuel gadfly and go-between extraordinaire was like Hobbes only an amateur in geometry,
but Roberval would later hold a chair in mathematics at the College Royal. By his own account,
which Mersenne corroborated, Hobbes chalked on the wall of the convent an argument for the
equality of arcs of the two curves, spiral and parabola, have equal lengths. While not of course a
rectification of either curve, this result if valid, would have been of much interest and importance
in its own right.”
Hobbes explains (translated from latin) :”Being with Mersenne and Roberval in the cloister of
the convent, I drew a figure on the wall, and Mr Roberval, perceiving the deduction I made,
told me that since the motions which make the parabolical line, are one uniform, the other
accelerated, the motions that makes the spiral must be also; which I presently acknowledge;
and he the next day, from this very method, brought to Mersenne the demonstration of their
equality.”
Hobbes was not so good mathematician like he pretended ”and it is true he had no remarkable
influence on mathematicians, nor on philosophers of mathematics” - see (7)-.
There is no mention of how Hobbes would have found (if he did have) this property of arc lengths
of spiral and parabola and it appears it was a good intuition. Kirsti Pedersen in (4) writes :
”Thomas Hobbes seems to be the first who got the idea to compare the arc lengths of the two
curves at the end of 1642 and Roberval the first to give a proof. Mersenne informed Fermat and
Torricelli of it. Both proved later that this property could be generalized to spirals ρn = aθm

and parabolas ym = b.x(m+n) where m and n are rational numbers and b = nm/(n+m)m.a−1”.

Later, under the pseudonim of Amos Dettonville, (10/12/1658) Pascal gave in (5) his own
proof and writes :
”Thifteen years ago Mr Hobbes believed that the curve line of a given parabola was equal to a
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right line. Mr de Roberval replied it was equal to the curve line of a given Archimede spiral;
But without a demonstration other than motion, we can see some explanation in the book on
Hydraulica (1644) of R.P. Mersenne : and since this kind of demonstration is not absolutely
convincing, other geometers believed he was wrong, and published that this parabolic line was
equal to the half circonference of a given circle.” ...”And neither using the method of motions,
nor the one of indivisibles, but following the the path of ancients so hencefor that could be strong
and undisputed. I have done it and found that Mr Roberval was right and that the parabolic
line and the spiral are equal one to the other”.
It must be recalled that in 1642, except the circle, only one plane curve, the logarithmic spiral,
had been rectified by Descartes (1638) and independantly by Torricelli (1640) so the proof of
equality of arc lengths between two plane curves was a surprising result. And it is only in
1657-58 that the semi-cubic parabola (Neil) and the cycloid (Wren) could be rectified.

Figure 3: Archimede spiral rolling on parabola

4 Geometria pars universali and Gregory’s transformation

In 1668 James Gregory(1638-1675), a scottish geometer, was in Italy and published in 1668 at
Padova a book ”Geometria pars universalis” in which presented, in a geometric style, number of
solutions to problems of the time. He also presents an interesting infinitesimal transformation
which makes a correspondance between two plane curves in such a way it conserves the element
of arc at corresponding points of the two curves, sometimes called ”involuta” and ”evoluta”.
This leads to a completely geometric result that we explain in the next section.
The Gregory’s transformation (GT) : if the involuta is given in polar coordinates (ρ, θ) we get the
evoluta parametric equation in an orthogonal frame (y, x). If we respect some initial conditions,
since it needs an integration, then the two curves of Gregory can roll without slipping on on the
other in such a way that, if the evoluta is supposed to be fixed then the pole O of the evoluta
will run on the x-axis. Conversely if we fix the involuta then the evoluta can roll on the involuta
so the x-axis will constantly pass through the fixed pole O. This just like a couple wheel-ground
(= Involuta-Evoluta) many examples of such couples can be found as gif animations on Internet.
Gregory’ transformation gives the condition for the rolling curves and this is just the equality
of arcs (no slipping) of the two curves.
But this way of seeing seems more recent and goes back to 19th century in ’Nouvelles Annales
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of Mathematics’. The notations of Leibniz for calculus and polar coordinates help to present
Gregory’s transformation in a very simple set of equations.
Below we recall geometric properties of these corresponding couples of plane curves and use
the terms ground (y, x) and wheel (ρ, θ) to name the couple of associated objects defined by
Gregory’s transformation.

5 Polar coordinates, cartesian coordinates and the Gregory’s
transformation.

The rolling motion of a curve in a mobile plane on another curve in a fixed plane took part in
17th century to the developpement of new methods on curves like the roulette or cycloid : the
track of a point of a circle rolling on a straight line.
Modern notations developed by Leibniz give a clear exposition of the problem :

Figure 4: ground and wheel

We use the parametric equation (y, x) or (ρ, θ) as functions of a single parameter to define the
curves.
Gregory’s transformation associates two plane curves, one in polar coordinates (ρ, θ) and the
other in cartesian orthonormal (y, x)-frame, and is defined in the following way :
A - If the wheel is given we know (ρ, θ) then the ground has parametric equations:

y = ρ and x =
∫ θ
θo ρ.dθ (1) Direct Gregory’s Transformation: GT) .

B - In the opposite way, if the ground is given we know (x, y) then the wheel has parametric
equations:

ρ = y and θ =
∫ x
xo

dx
y y 6= 0 (2) Inverse Gregory’s Transformation : GT−1) .

Define : tanV =
ρ.dθ

dρ
=
dx

dy
(3)

We give now the geometric properties of these corresponding ground (x, y) and wheel (ρ, θ) to
name the couple of curves associated by Gregory’s transformation. It is a broad generalization
of the the wheel, pole at the center.
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Remark 1: For the wheel V is the usual angle between ρ and the oriented tangent line. For the
ground the angle V is defined between y’y and the oriented tangent. It is not the usual angle γ
between axe xx’ and the oriented tangent.
Remark 2: We note that GT−1 is defined in the plane except on the line y = 0. This line is
called the ”base-line” or ”critical line”.
Remark 3 : The rolling move is supposed to be without slipping so sw = sg. Since ρ = y and
ρdθ = dx the two elements ds arc lengths for two associated points are equal and :

ds2 = dy2 + dx2 = dρ2 + ρ2dθ2 = dρ2.[1 + tan2 V ] =
[

dρ
cosV

]2
=

[
ρdθ
sinV

]2
.

The property 1 for areas is easy to verify :

Aground =

∫
ydx = 2.

1

2

∫
ρ2dθ = 2.Awheel

The property 2 for equality for arc lengths is almost obvious :

sground =

∫ √
dy2 + dx2 =

∫ √
dρ2 + (ρ.dθ)2 = swheel

It is true for any couple of curves ground - wheel between two correponding bounds.

5.1 Triangle MTN in ground - Tangent subtangent / Normal subnormal
(Leibniz differential triangle : dx, dy, ds)

M(x(t), y(t)) is the current point of the curve then n=MN is the normal, t=MT the tangent ,
sn= HN the sub-normal and st=HT the sub-tangent. The ds is equal to the arc of circle passing
through M centered at N and this variable circle has (C) as envelope. The differential triangle
(dx, dy, ds) is similar to the THM (’ is derivation wrt x).

y′ =
dy

dx
= tan γ = tan(π/2− V ) ds2 = dx2 + dy2 =

dx2

cos2 γ
=

dy2

tan2 V

st = − y
y′ sn = y.y′ t2 = y2(1 + 1

y′2 ) n2 = y2(1 + y′2)

5.2 Polar Triangle MTN - Tangent subtangent / Normal subnormal (Polar-
Triangle : dρ, ρdθ, ds)

M(ρ(t), θ(t)) is the current point of the curve then pn=MN is the polar normal, pt=MT the
polar tangent , psn= ON the polar sub-normal and pst=OT the polar sub-tangent. The ds is
equal for a couple of curves wheel-ground linked by Gregory’ transformation ( ’ is derivation wrt
θ):

y = ρ x =

∫
ρdθ or ρ = y θ =

∫
dx

y
y 6= 0

For the wheel in polar coordinates, the differential triangle (ρ.dθ, dρ, ds) is similar to the TOM.

ρ

ρ′
=
ρdθ

dρ
= tanV = tan(π/2− γ) ds2 = ρ2dθ2 + dρ2 =

dρ2

cos2 V
=
ρ2dθ2

sin2 V

pst = −ρ2

ρ′ psn = ρ′ pt2 = ρ2(1 + 1
ρ′2 ) pn2 = ρ2(1 + ρ′2)
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Figure 5: Triangle MTN in ground Orthonormal (y, x)

Figure 6: Triangle MTN in wheel (ρ, θ) the two triangles are superimposed at the contact point.

6 Couples wheel-ground : the geometric interpretation of Gre-
gory’s transformation

The transformation which associates a plane curve in polar coordinates (ρ, θ) to a plane curve
in cartesian orthonormal coordinates (x, y) is a mean to find the ground on which must roll the
wheel with pole at O so that O runs along the x-axis of the fixed ground. And in the opposite
way to find the wheel when the ground is given.

The Spiral of Archimede can roll inside a parabola in such a way that the pole of the spiral
(the wheel) ρ = a.θ describes the axis (=the base-line) of the parabola y2 = 2ax (the ground)
Applying GT we have : y = ρ = a.θ and x =

∫
ρ.dθ = a

2θ
2. so the ground is y2 = 2.a.x.

For the generalized archimedean spirals ρ = θn :
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Applying GT we have : y = ρ = a.θn and x =
∫
ρ.dθ = a

n+1θ
(n+1) so the ground is yn+1 =

a.(n+ 1)n.xn.
For the generalized parabolas or hyperbolas of the form y = a.xn with use of GT−1 we find :
ρ = y = a.xn and θ =

∫
(a.xn)−1.dx = 1

a .
x1−n

(1−n) so the wheel is ρ(1−n) = a.(1− n)n.θn.

Figure 7: Example of couples Wheel / ground with constant element in triangle : y, n, st, sn, t
and V
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