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Abstract

The ”curves of direction” go back to G. Salmon and E. Laguerre who gave their name to
these curves which have a link with caustics by reflection and interesting properties. Curves
of direction are caustics for parallele light rays with the condition to be algebraic and to
have an algebraic expression of the element of arc. Leibniz, Bernoulli brothers and ’Hopital
knew that this special type of caustics had a rational element of arc.

1 Caustics and Envelopes

In the last decade of seventeenth century the Bernouilli brothers explored new problems of the
new calculus using Leibniz methods and notations. Differential geometry was beginning and
Marquis de I’Hopital, in his textbook of 1696 written from lessons by Johann Bernoulli, gave a
summary of the new technics of calculus known at the time. Tangents, osculator circle, envelope
theory, involute, evolute are explained to the few readers. The book of the marquis was the
principal document used by pro and anti new calculus and had a great influence in France to
propagate this new Calculus method in the presentation of Leibniz and brothers Bernoulli.

Usual method to find envelopes in the plane of a family of curve depending on a parameter
t is given by the elimination of this parameter and derivative w.r.t. t of the curve equations.
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We use a simpler set of equations to look for envelope of a line function of parameter t :
_ _ dfe _
flx,y,t) =u(t)r +v(t)y+c(t) =0 and i 0 (b)

1.1 Envelope of a line angulary fixed to a variable circle rolling on x’x-axis.

We use equations (b) to find the envelope of a diameter (angulary fixed) of a variable circle
rolling on x’x. The diameter (d) is in vertical position when the move begins. The variable
radius is R = f(t¢). The angle of rotation of (d) is 6, the abcisse of I is z7 () then :

9—/0 ldt=t xr(t) _/0 f(t).dt yr(t) = f(t) droite : y = xz/tant + f(t)

The last equation is the one of the diameter (d) with parameter t. So the parametric equations
of the envelope of (d) are given by :
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Figure 1: Variable Rolling Circle : envelope of an angulary fixed diameter

This method to consider a line moving in the plane by mean of a variable rolling circle is in fact
equivalent to Euler magic equation :

p(a)
COS ¥

=0

xsina —ycosa —pla) =0 or y=xtano —

This tangential representation of a curve by its tangents is mean to find properties of many
curves when we choose the arbitrary function p(«).

1.2 Examples :
-1- If f(t) =t then we obtain the cycloid :

x = sin?t y=t+sintcost

-2- If f(t) = tant, we get :

z = tan’t y = 2tant y? = 4.2 +— A Parabola

2 Curves of Direction

The concept was defined by G. Salmon in his treatise on plane curves and E. Laguerre who gave
the name curves of direction (COD) in 1882. These authors limited the definition to algebraic
curve (with algebraic element of arc function of the coordinates (x,y) expressed without rad-
ical). Appel and Humbert generalized to transcendental curves with examples as the classical
catenary, singular curve of pursuit or the cycloid which have not a rational arc.

A definition of algebraic COD is the property : The distances of any point in the plane are
rational function of the coordinates of the contact point in the plane. The tangential equation
(ux+vy +1=0) is :

2 (u,v)(u? +v?) = F?(u,v)




This equation is the consequence of the formula giving the distance from a point M(x, y) to a
line in the plane M H? = (ux + vy + 1)%/(u? + v?) = f2(u,v).

A curve ¥(x,y) = 0 is of direction if U’2(z,y) + U2(z,y) is the square of a rational function of
the coordinates of the points (x,y) of the curve.

Some properties :

- The inverse curve of a COD is a COD.

- The arc length s of a COD is expressed by the integral of a rational function of (x,y), coordi-
nates of the current point.

- The caustics by reflection of algebraic curves are COD for parallele light rays.

- These caustics, in general, have an arc expressed by a rational function of the coordinates.

- The evolute of a COD is a COD except when the COD is cut orthogonally in 2 points by each
normal.

- Any parallele curves of a COD is also a COD.

- The anticaustics of algebraic curves for parallele rays are COD.

Examples of COD are the nephroid, the Tschirnhausen’s Cubic or the astroid. The first COD
was probably the Nephroid of Huygens (1678) and E. W. Tschirnhaus published a paper on the
caustic of the circle for parallele light rays in 1682 in Acta Eruditorum and the Tchirnhausen’s
cubic appears in the same publication in 1690.

3 Curves of Direction as caustics by reflection of algebraic plane
curves for parallele light rays

Rays of light 11 oy
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Orthogonal tangents transformation (OTT) : (M), (M,), Anticaustic and Caustic.
The two curves (M) and (M,) have the same anfi-bisectante =the Anticaustic -
The envelope of the line MM, is the caustic = the evolute of the Anticaustic.

Figure 2: Two mirrors, anticaustic and its evolute the caustic

The caustic by reflection on a mirror curve in the plane is the envelope of reflected light
rays coming parallele to Oy axis. It can be shown that there is another mirror on which the
same ligth rays reflect and has the same caustic as envelope (see the figure above). These two
mirrors M; and My give the same caustic (C) and are exchanged by an orthogonal tangent
transformation (OTT) with T moving on axis x’x. The projection D of point T on the reflected



light ray is on the common anti-bisectant of the two mirror curves for the axis x’x. The caustic
is envelope of the reflected light ray M;Ms and the evolute of the locus of D (anticaustic). The
four curves : 2 mirrors /anti-bisectant and caustic form a quadruplet which will focus on in the
rest of this paper.
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The angle (2'xz,TM;) = ~ so that tan+y is the slope of TM; at current point M; on the

Anti-Bisector of (C) (K)

(C) is the Bisector of (K )/ x-axis
(K) is the Antibisector of (C) / x-axis
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Figure 3: Anti-bisector

Bisectors of (C) : (B1) and (B2)
D Antibisectant of B1 or B2
(w.rt x-axis)

e T - H prers
Figure 4: OTT and the two bisectors (B;) and (Bsg) of (C) w.r.t. x-axis

first mirror then for the second mirror curve at Ms, corresponding to My by OTT, the slope is
/2 — . The common reflected ray on the mirrors is the line M; M, : we can see on fig.4 that
the slope of My Ms is :

slope M1 My = 2y — 7r/2‘

So when the current tangent turns of du the line MM turns of —2.du and it is the property
that explains the fact : the envelope of MyM; is a caustic and if algebraic and under certain
conditions it can be a COD. In this case the locus (C) of D is also a COD as involute of a COD
(see fig.4).

For a given mirror and a direction of parallele light rays the caustic and the second mirror
are unique. But in the other direction, given the caustic, there are infinitely possible pairs of
mirrors to generate the caustic.



CAUSTIC OF MIRROR CURVES
LIGHT RAYS PARALLELE TO y-Axis
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Figure 5: Links between the 4 curves : 2 mirrors 1-2, antibisectant and its evolute the caustic

4 Curves of direction obtained by the general formula with two
arbitrary functions f(t), g(t):

The Tschirnhausen’s cubic and the Nephroid are COD for which the mirrors were algebraic
curves : parabola and circle. The rational expression of the arc length is a general property and
if we look for curves in parametric coordinates x(t), y(t) we have the following general formulas
depending on two arbitrary functions f(t) and g(t) then :

o(t) = [ f(t).dt  y(t) =5 [ f(O)lg(t) — 53]t

The slope of the tangent at current point is :

dy g°(t) -1
de— 2g(t)

so if we we choose for g a tangent function so g(t) = tant then the slope is
—1/tan 2t = tan(2t — 7/2) so: a=2t—m/2

It is exactly the slope of M;Ms in the above geometric interpretation of caustics.
For these curves the arc length is given by an expression without radical :

to-i(t) = 3 [, F()-|9(t) + s |t

So the expression under some assumptions can be algebraic and algebraically integrable. With
these formulas we can generate as many CODs as we want. An easy example is the curve of



pursuit of Bouguer. We set f(t) = t"~! and g(¢) = t then the parametric equations of the CODs
depending on parameter n (ratio of speeds) are :

1 1
z(t) = /t”l.dt y(t) = 2/t”1[t— Zldt
tn 1 tn-l—l tn—l 1 tn—l—l tn—l
t) = — t) == - t) ==
z(t) n y(®) 2[n+1 n—l] s(t) 2[n+1+n—1]

The function g(t) gives interesting properties if we choose for g(t) the tangent of an angle (see
my paper 15). The Nephroid and the astroid are such examples with algebraic arc :

For the Nephroid : take f(t) = 6sint?cost and g(t) = tant then :
x = 2sint? y = (2cost® — 3) cost +— the Nephroid
For the Astroid : take f(t) = 3sint?cost and g(t) = tant/2 then :
z = sint? y = cost3 +— the Astroid

These general formulas can give curves which are transcendental COD with an arc not algebraic.
Here are three such examples :
For the Cycloid take f(t) = —4sintcost and ¢(t) = tant/2 then :

x = 2cost? y =2t +sin2t <— the Cycloid
For the special curve of pursuit take f(t) = e! and g(t) = e~ then :

1
rz=¢e y= 1(275 ) +— Special curve of pursuit

For the Catenary take f(t) =1 and g(t) = e’ then :

x=t y = cosht +— the Catenary

In this last case the mirrors are two exponentials e*? so not algebraic.

5 A method to find curves of direction from an known one :

In a paper of 1896 Paul Appell - see (5) - gives an interesting method to create new CODs when
we know the equation a COD. We follow its paper. Suppose F(X,Y) = 0 the implicit equation
of a COD. If S is the arc length of this curve then :

dS = \/dX? +dY? = R(X,Y)dX

where R(X,Y) is rational function of X, Y. If f(z) is a rational function of z = z + iy (complex)
choosed soo that all residues of f2(z) are equal to zero. We set :

Z:X+W:/ﬂ@m (1)
The integral is a rational function of z. Identifying real and imaginary parts :

X=¢(xy) Y=9y (2

By substituting these values in the equation of the initial COD F(X,Y") = 0 we get the equation
of a new curve which is also a COD.
Equation (1) becomes :

dX +idY = f*(2)(dx + idy)



Exchange now i in -i and use Z the conjugate of z. We call f(Z) the function of conjugate variable.
In general, if f is a holomorphic function whose restriction to the real numbers is real-valued or
equivalently if the power serie representing f(z) = Y " anz™ has only real coefficients a,, and
f(z) and f(z) are defined, then :

f(z) = f(2)
our function is supposed to have the property so the product f(z).f(z) = f(2).f(z) is real so :

dX —idY = f2(z)(dz — idy)

dX? +dY? = f(2).f2(2)(d2® + dy®)

and taking square root dS = f(z).f(z)ds. Since the hypothesis F(X,Y) = 0 is a COD then
dS/dX is a rational function of (X, Y) :

ROCY)
f(2).f(2)

So, from (2), ds is a rational function of (x, y) and the new curve G(z,y) = 0 is also a COD.

The method requires to choose the function f(z) and a simple COD as starting curve to simplify
the computations. The lower orders CODs are the line and the circle. There are only two CODs
of third order : Tschirnhaus cubic and the special curve z3 —3zy? = a3 or 13 cos 30 = a. Appell
gives an infinite serie of COD using f2(z) = (2k + 1)2%" and for initial COD the line X = a* so

we have :

X +1iY =2k +1) /z%.dz = 2R+l
And the new curves of direction are a subclass of sinusoidal spirals :
2 cos(2k +1)0 = a1

Taking f(z) = 1/z reducts to the inversion in the plane.

Some more general sinusoidal spirals are also curves of direction :

p:cosp/q [(]%)0} foroddp,qeN png=1

6 Caustics by reflection and generalized sinusoidal spirals with
V=mn/2—-2t

6.1 Sinusoidal spirals and Ribaucour curves

(We recall here some results of my paper 3)

The usual definition of Ribaucour curves is the following : given a fixed line (base line A) in the
plane these are curves such that if MC is the radius of curvature the normal at the current point
M cut the base line at N in a constant ratio k so : MC/MN = k. But we will give another
equivalent definition. Ribaucour curves are grounds for sinusoidal spirals wheels when the pole
runs on the base line A. The polar equation of sinusoidal spiral is p = cos(6/n)™ then by direct
Gregory’s transformation we have y = p and @ = [ pdf = [(cosf/n)"dh. We set u = 6/n
soy = cos"u and z = [(cosf/n)"dfd = n [ cos™ udu. These are the parametric equations of
Ribaucour curves. We will generalize sinusoidal spirals. And the larger set of spirals will lead
us to a larger set of curves that I call generalized Ribaucour curves as grounds corresponding to
these new curves as wheels.



6.2 Some remarkable curves in polar parametric equations

Here are some polar parametric equations (p(t),6(t)) of well known plane curves as evolute of
the circle, tratrix spiral, Norwich Spiral and its inverse :

p =1/ cost, 0 =tant —t (Evolute of the circle)
p = cost, 0 =tant —t (Tratrix spiral)
p=1/cost? 0 =tant — 2t (Norwich spiral)
p = cost?, 0 =tant — 2t Wheel for the circle-ground and its tangent

For these curves the angle V - between vector radius and tangent - V' = ¢ for the first two and
V = /2 — 2.t the two last. The polar angle is of the form : § = ntant-+ p.t so these four curves
have a linear expression of V function of t. We want to generalize and find other curves with
analog property for V and 0 expressed in the same form as above.

6.3 Two transformations keeping angle V

For the generalization we need two plane transformations :
The first one goes back to Mac Laurin and is the conformal complex function :

n_ind 0

Z =z2"=)p"e with z = pe
which keep angle V and that we can write :
p—p" and 0 — n.b (Mac Laurin)

The second transformation is the pedal, the locus of projection of pole O on the current tangent.
Successive pedals have the same angle V. Initial curve is (p, ) so :

Pped = p-sin’V’ and Opea =0 —7/2+V (Pedal)

Combining the two transformation (Mc Laurin/pedal) from the same pole also keeps angle V.

6.4 A special parametric expression for polar angle ¢
Inspired by the four examples above we generalize the polar angle in the following form :
0 =ntant + p.t

where n and p are real rational fixed parameter (or most often integers). Curves parametrized
by angle t.

6.5 Grounds for generalised sinusoidal spiral for angle V = 7/2 — 2t

We impose for our curves the angle V (between vector radius and tangent) to be equal to w/2—2t
so tanV = 1/tan 2¢t. Then from the formula:

tanV = pdf/dp = tan(mw/2 — 2t)
we can compute by only one integration the values of p, since # = ntant + p.t then
df = [n(1 + tan®t) + pldt

And we get :
d
?p = [n(1 + tan®t) + p| tan 2tdt



dp  2n(1+tan®t)tant sin 2¢

— = dt dt
P 1 —tan?t * pcos 2t
dp 2tantd(tant) sin 2t
@ dt
) 1 —tan?t +pcos 2t
and finally (by integration) :
9 P cos2t, p
log(p/C) = —nlog|1 — tan” t| — 3 log | cos 2t| = —nlog]| Qt’ —5 log | cos 2t|
0s

So the parametric equations of these curves are :

(cost)?"

P (cos 20)@n D)2 0 =ntant+pt —V =m/2-2t
We change first p —> 2p to keep integer indexes

~ (cost)? -
" (cos 2t)(n+p) 0 = ntant + 2p.t

and second p — —(n + p) then the polar The equations of Cy.(n,p) become :

p = (cost)*.(cos 2t)P) and 0 =ntant —2(n+p).t

This way p is exactly the pedal index since V' = 7/2 — 2t and n the Mc Laurin index. In
the expression of p the pedal and the Mc Laurin parts are separated.

7 A subclass of curves linked with wheels Cs.(n, p) and to ”curves
of direction” as a generalization of Tschirnhausen’s cubic or

Nephroid:

We study grounds corresponding to wheels for which p = 0 with parametric equations :

p = (cost)?" and 0 = n(tant — 2t)

We use these wheels in polar to find ground curves using direct Gregory’s transformation
(y = p and x=[ p.df) by one integration we get the parametric equation of the ground in
the plane (x,y) for n positive integer :

y=p=cos™t and x= /p.d9 = n/cosQ” t.(tan®t — 1).dt

We identify these equations with the one of general caustics generated by the arbitrary
functions f(t) and g(t) which are COD when algebraic. We find :

f(t) =2ncos® tsint and g(t) =tant

8 Ground corresponding to wheels Cy,(n,0) when n > 0

The grounds corresponding to the class of wheels Cs,(n, p) are caustics by reflection in the
same way as the well know example of Nephroid. The subclass of grounds corresponding
to curves Co,(n, 0) - with 2.n€ Z - are caustics of plane curves.



we shall consider the curves for small n positive and negative. Since the ordinate y =
0s®" t we explore half integers (so : 2.n=an integer) and examine two classes y < 1 so n
is positive and y > 1 for negative n. The first cases are :

n=1/2: Poleni’s curve,
=1 : Circle,

n=3/2 : Nephroid,

n=-1 : Tschirnhausen’s cubic,
=-2 : I'Hopital quintic.

The following curves: Ciz(n,0): p = cos®"t, 6 = n(tant — 2t) presents interesting

Figure 6: Ground for Cs.(n,0) Angle V = 7/2 — 2u from n=1/2 to 4 by step 1/2

properties : they are wheels for caustics. The serie of curves that we discuss here is a
subserie of above grounds for the wheels Cy.(n,p) when p=0 and n=1/2 to 4 step 1/2 :

n= || Curve y= =

1/2 || Poleni’s curve | 1/ cosht (1/2)(t — 2tanht)

1 Circle cos?u | (1/2)sin2u

3/2 || Nephroid cos® u (1/2) sinu(3 — 2 cos® u)

2 — cos*u (1/2)[u+sm2u—|—(1/4) sm4u]

5/2 || — cos®u | (1/2)sinu[2. cos* u + 2. cos® u — 1]

3 — cos®u (1/4)[(3u + 4 cos® u—|—2c0s u+3cosu)]

7/2 | — cos’ u I smu —|— & sin 3u + 55 sin 5u + m sin 7u]

4 — cos® u [g—fu + 55 sm 2u + < s1n 4u + 4 sin 6u] + = sin 8]

As we noticed for positive values, in the table above for n=1 circle, 3/2 nephroid, 5/2 and

7/2 the curves are algebraic with a rational arc length and are curves of direction.

8.1 Curve of direction for n= 1 : Circle

We consider first the circle or more precisely two equal circles tangent ex-
ternally placed symetrically w.r.t. Vertical axis (see fig.7) :
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Curve || Mirror 1 Mirror 2
Xy =—1+ttant/2 Xy =1+ttant/2

__ tcost—sint _ —tcost+sint
YM ~  —1+cost YM/ - 14cost
n = 1 || Anti-bisectant-Involute | Caustic = curve of direction
Xp =cost+tsint Xc=costx1
Yp = —tcost +sint Yo = sint
) . Bisectant
Mirror 2 / \\\ 4 arcs (evolute of the Circle)
" | Mirror 1 K.""“-‘.‘
\_ A
“. N _Caustlc:COD _7 J
\
\ o n=1: Two circles

Figure 7: Quadruplet for n=1

We have traced only a part of the first turn of the evolute of the circle
: the two parts on either side of x-axis limited to the intersection with the
y-axis and completed the graph by symmetry w.r.t. y-axis. We draw this
way a simple curve made of two pieces thus avoiding drawing the involute
(which is an infinite spiral) in its entirety. We find that the two mirrors
and the involute are transcendental curves.

8.2 Curve of direction for n= 3/2 : Nephroid
The first curve is the nephroid (order 6) :

Curve Mirror 1 Mirror 2
Xy = cost Xy =2/ cost — cost
Yy = —sint Y = —sinttan?t
n = 3/2 || Bisectant-Involute Caustic = curve of direction
Xp =cos®t+3costsin’t | Xo = cos®t
Yp = 2sin’t Yo = —(1/4)(3sint +sin®¢t)

11



Yy . Bisectant
Mirror 2 | Mirror 1
: /
\ /
\
4N
A Y
— |
\'\ /
N e
h L n=3/2 Mephroid

Figure 8: Quadruplet for n=1

8.3 Curve of direction for n= 5/2.

Curve || Mirror 1 Mirror 2
Xum = (1/6) cost(5 + cos 2t) Xy = —(1/24)(—45 + 20 cos 2t + cos 4t) / cos t
Yy = —(1/6)(9 4+ cos2t)sint Vi = —(1/6)(9 + cos 2t) sin ¢ tan? ¢

n = 1 || Anti-bisectant-Involute Caustic = curve of direction

Yp = —(1/3)(9 + cos 2t) sin® t

Xp = (1/24)(40 cost — 15 cos 3t — cos bt)

Xo =cos’t
Yo = (1/16)(—20sint — 5sin 3t — 5sin 5t)

" Mirror 2

“._Bisectant
Y

%
Y

Mirror 1

Figure 9: Quadruplet for n=5/2
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8.4 Curve of direction for n= 7/2.

Curve Mirror 1
Xy = (1/240)(206 cos t + 31 cos 3t + 3 cos bt)
Y = (1/120)(233 4 44 cos 2t + 3 cos 4t) sint
Mirror 2
Xy = (—1/160)(—350 + 175 cos 2t + 14 cos 4t + cos 6t)/ cost
Yar = (1/120)(233 + 44 cos 2t + 3 cos 4t) sint tan? ¢
Anti-bisectant-Involute
Xp = cos’ t + (7/120) cos t(89 + 28 cos 2t + 3 cos 4t) sin” ¢
Yp = (1/60)(233 + 44 cos 2t + 3 cos 4t) sin® t) sin® ¢
n = 7/2 | Caustic = curve of direction
Xo = cos’ t
Yo = (7/64)(15sint + (11/3) sin 3t + sin 5t + (1/7) sin 7t)

h \Bisectsnt

Wirror 2 |
|' ~ | Mirror 1 |

-

Figure 10: Quadruplet for n=7/2

8.5 Curve of direction for n= 1/2. Poleni’s curve

It is useful to consider instead of a unique curve, the union of two symmetrical copies of
poleni’s curves joined along the asymptote :

Curve Mirror 1 Mirror 2

Xy = coshu Xy = ucoshu

Y = u — coshusinhu Yar = (1/2)(—1/tanhu + u/ cosh® u)
n = 3/2 || Anti-bisectant-Involute Caustic / not algebraic

Xp = (1+wutanhwu)/coshu | X¢ = 1coshu

Yp =t/ cosh® u — tanh u Yo = (1/2)(u — 2 tanhu)

As we did above with the circle, for the Poleni’s curve as caustic we have traced half
of drawing on the right side of vertical axis and completed the graph by a symmetry

w.r.t. its asymptote placed on the y-axis (see fig.11).
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Figure 11: Quadruplet for n=1/2

8.6 Ground corresponding to wheels Cy,(n,0) when n <0

We calculate the first equations of the grounds for n=-1/2 to -4 with step -1/2. The polar
angle 6 is 6 = n(tant — 2t) so df = n(tan®*t — 1)dt. And we use a gudermanian change of
variable coshu = 1/ cost, sinhu = tant so coshu.du = (1 + tan?t).dt = (1 + sinh®u).dt
and dt = du/ coshu we get :

y =cosh®u and z = /coshQ" u.df = n/cosh%1 u.(sinh® v — 1).du

We identify these equations with the one of general COD generated by the arbitrary
functions f(t) and g(t). We find easily :

f(t) = 2ncosh® ! tsinht and g(t) = sinht

n= Curve | y= X=

—1/2| - cosht (1/4)(sinh t cosht — 3t)

-1 T.C. |14+v* |v—2%/3 with: v =tanu = sinht (gudermanian)
—3/2 || - cosh®t | (3/8)[tanht cosh®t — (5/2)[tanh ¢ cosh® t — (5/2)t]

-2 L.C. | (1+v%)?|2[v°/5—1]

=5/2 || - cosh” t (5/48) tanh t[4 cosh®t — 7 cosh® t — (21/2) cosh® t — 15t]
-3 |- (14v?)% | 37 /T+v°/5 —v*/3 — 0]

—7/2 | - cosh’t | (5/48) tanht[4 cosh®¢ — 7cosh*t — (21/2) cosh® t — 15t]
—4 - (1+ 03 | 4(0%/9 4207 /7 — 203 /3 — v)

In the table above the curves for n=-1, -2, -3 and -4 are algebraic with a rational arc
length and are curves of direction stricto sensu. For n half integer the curves are not
algebraic so not COD.

8.7 Curve of direction for n= -1 : Tschirnhausen’s cubic.

This curve is a cubic :
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T

N, ST
0

Figure 12: Ground for C_3(n,0) Angle V = 7/2 — 2 from n=-1 to - 4 by step -1/2

Curve || Mirror 1 Mirror 2
Xy =12 Xy = —3t2
Yy =2t Y = 283
n = 1 || Anti-bisectant-Involute | Caustic = curve of direction
2t2—3 2
XD:th2 Xo =3t
4 _ 3
Viror 2 Bisectant
. B /’-"M|rr0r1
(A~ '
IS caustie=con
H-mm__""‘----._
M1

Figure 13: Quadruplet for n=-1

8.8 Curve of direction for n= -2 : I’Hopital Quintic or Looping curve.

The second curve is of order 5 :
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8.9 Curve of direction for n=

Curve || Mirror 1 Mirror 2
Xy = 1—|—£+§ Xy = ——(6+t2)
Yy = —:t(5 + t%) Y = 4t3(5+t2)
n =2 || Anti- blsectant Involute | Caustic = curve of direction
__ (15—15¢2+5¢143t%) _ 212
Xp = (154 1507) Xe=(1+¢)
5+t
Yy = 00 Xe = 2((# - 5)
Bisectant
MirrorE\“\\ e ~ -I.\.?i.rr0r1
N A/
N Caustic=COD
\m~
N2

Figure 14: Quadruplet for n=-2

-3:

This curve of direction is of order seven :

Curve

Mirror 1

Mirror 2

XM=1+t2+3;4+f
Vi = —2t(35 + 14¢* + 3t*)

Xor =1 S (t* + 5% + 15)
Yy = t3(35 + 142 + 3t4)

Anti- blsectante Involute

Caustlc = curve of direction

Xp = 35— 7%2(;;1;1;5%# Xo = (1+t2)3
3 4 7 5 3
Yy = 4 (3355J(r11ft;)r3t ) Yo = 3(t + t_ _ t_ _ )
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" Elislctant o

'\L‘ —

“"-._ __-d'"'--
Mirrar 2 *, — Mirror 1
\ -

b, -

N .
| e
“, .
N, e

N

Figure 15: Quadruplet for n=-3

8.10 Curve of direction n= -4

This curve of direction is of order 9 :

Curve || Mirror 1 Mirror 2
_ 42 6t2 40 8 _ 2 4 418 8
XM—1+T+T+T+§ XM/_1—34t —2t—?—7
Yir = —3=(105 + 63t? + 27t + 5¢°) Vi = —5=(105 + 63t% + 27t* + 5t%)
n = 4 || Bisectant-Involute Caustic = curve of direction
__ 315—945t2—210¢t*+126¢5+135t3+35¢t10 _ 2\4
Ao = 3 315<+1+t2>+ Xo=(1+1)
Yp = —%(105 + 632 + 27t + 510 | Yo = 4(87/9 + 277 — 23 /3 — 1)
Bisectant #,f"#..
\._L‘\ ____,-'"'#
" Mirror 1
\._\\ ____.-""’
Mirror 2 / //’/
\.\ //z’
'\.\- ,‘(/- B T
/z; I"«.. I R T
y WS .
/ ._ \\\ Caustic=C0OD
Iy ”/ HHHH
N4

Figure 16: Quadruplet for n=-4

9 Other classes of generalized sinusoidal spirals to explore.

The serie for p=0 is only a small part of curves Cy,(n,p) but all values of p we can
use the same procedure as the one explained above to find other plane caustics. And
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also among them new curves of direction as ground corresponding to these generalised
sinusoidal spirals.
An alternative possible choice, instead of V' = Pi/2 — 2t that led us to the curves of
direction listed in present paper, is V = 2t but this hypothesis for V gives the following
parametric equation :

_ Sinn+p)/2t e(fn/4)tan2t

We find that the presence of a real exponential function e(~"/4tn*t gionificantly compli-
cates the calculations. The three only cases without real exponential, as 1 have mentioned
in my paper 3, are :

e 1: V =t for the class of curves C4(n, p),
e 2: V =m/2—2t for the class Ca.(n,p),
e 3: V =3t for the class Cs(n, p).
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Part XVII : Cesaro’s curves - A generalization of cycloidals.

Part XVIII : Deltoid - Cardioid, Astroid - Nephroid, orthocycloidals

Part XIX : Tangential generation, curves as envelopes of lines or circles, arcuides, causti-
coides.
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