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Abstract

We have selected some plane curves in the series of generalized sinusoidal spirals called
Ck(n, p). And give various properties using elementary geometry or analytic transformations
like Gregory’s and Mc Laurin’s, pedals, evolutes and involutes. A section is devoted to
Cyclodes of Sylvester.

1 Plane curves equations

Plane curves can be useful and sometimes have led to important developments.
So the Cycloid was a useful curve to test the first results (within reach of the geometers) of the
calculus its specific properties was just at the level of what 17 century geometers could prove.
This was the beginning of differential geometry.
The Lemniscate of Bernoulli was also an object of experimentation for Fagnano to find the first
properties of elliptic functions before Euler, Gauss, Abel and Jacobi create the theory of elliptic
functions.
Without forgetting the circle that lead to first the elementary transcendental functions.
We will now consider plane curves in polar and orthonormal coordinates given by parametric
equations :

x = f(t) and y = g(t) (a)

or polar parametric equations :

ρ = f(t) and θ = g(t) = 0 (b)

and sometimes we use explicit equation when it is possible :

y = f(x) and ρ = g(θ) (c) - (d)

2 Curves with a special characteristic of angle γ or V

When we compute areas between curves and line it is in general not too difficult to obtain by

integration the result. But the computation of the arc length of a plane curve in orthonormal

or polar coordinate system leads often to a difficult intgration. For the Lemniscate of Bernoulli,

it needed to construct a new theory for the specific elliptic integrals. The reason is that most

often the element of arc is expressed by a square root of a function and is not integrable.

ds2 = dx2 + dy2 or in polar : ds2 = (ρdθ)2 + dρ2
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2.1 Curves of direction

When this integration is possible (in general) the ds is rational, so the radical desappears,
no square root in the expression. A classical example is illustrated by the curves of direc-
tion defined just by a constraint requiring the ds2 to be a regular expression.

x(t) =
∫
f(t).dt y(t) = 1

2

∫
f(t)[g(t)− 1

g(t)
].dt

The slope of the tangent at current point is :

dy

dx
=
g2(t)− 1

2g(t)

so if we we choose for g a tangent function so g(t) = tan t then the slope is

−1/ tan 2t = tan(2t− π/2) so : α = 2t− π/2

For these curves the arc length is given by an expression without radical :

sto−t(t) = 1
2

∫ t

to
f(t).

[
g(t) + 1

g(t)

]
.dt

3 Some curves and their polar parametric equations

Here are some polar parametric equations (ρ(t), θ(t)) of well known plane curves as invo-
lute of the circle, tratrix spiral, Norwich Spiral and its inverse :

ρ = 1/ cos t, θ = tan t− t (Involute of the circle)

ρ = cos t, θ = tan t− t (Tratrix spiral)

ρ = 1/ cos t2, θ = tan t− 2t (Norwich spiral)

ρ = cos t2, θ = tan t− 2t (Central inverse of Norwich spiral)

For these curves we call V the angle between vector radius and tangent. This angle is a
linear expression of parameter t. So V = t for the first two and V = π/2− 2.t for the two
last. The polar angle is in the form : θ = n tan t+ p.t and these four curves have a linear
expression of V function of t. We want to generalize this to find other curves with analog
property for V and θ expressed in the same form as above.

4 Curves parametrized by a natural tangent.

Another way to find plane curves with a regular ds is a class for which l call ”parametrized
by the tangent” of a parmeter t. For these curves we require that expression of the slope
:

dy

dx
= tan γ or in polar :

ρ.dθ

dρ
= tanV

And we use γ (orthonormal) or V (polar) - or a linear combination of this angle - as the
parameter to express the coordinates. Since we have the classical formulas :

dx = ds cos γ dy = ds. sin γ or in polar : ρ.dθ = ds sinV dρ = ds cosV
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Figure 1: The circle with its first and second Involutes

Then we have a magic simplification, since :

ds2 = dx2 + dy2 = ds2 cos γ2 + ds2 sin γ2

ds2 = (ρ.dθ)2 + dρ2 = ds2 cos2 γ2 + ds2 sin2 γ

Then result is a square expression because we have chosen the tangent of a characteristic
angle of the curve. We know some classical cases

4.1 Examples :

-1- If x = − sin t, y = cos t then we obtain the circle with tan γ = sin t
cos t

:

ds2 = dx2 + dy2 = cos2 t.dt+ sin2 t.dt = dt2

-2- If x = t− sin t, y = 1− cos t, we get the cycloid and tan γ = tan(t/2):

ds2 = dx2 + dy2 = (1− cos t)2.dt2 + sin2 tdt2 = 2(1− cos t)dt2 = 4 sin2(t/2)dt2

These two curves are ”naturally parametrized by the tangent” and so the trignometric
expression of ds is free of its radical.

5 Generalized Sinusoidal spirals and Ribaucour curves V = k.u
or V = π/2− k.u

All the curves we study have an angle θ = n. tanu+ p.u we derived from constraint on V
(to be equal to k.u ot π/2 − k.u) the radius vector ρ of the curves in polar coordinates.
In general we need a simple integration to get ρ(t) (see Part lll). For the first values of k
we get the following curves in polar parametric coordinates :
k = 1 :

C1(n, p) : ρ(u) = tann u. sinp u → V = u

C−1(n, p) : ρ(u) =
e

n
2
tan2 u

cosp u
→ V = π/2− 2u

k = 2 :

C2(n, p) : ρ(u) =
(sinu)(n+p)/2

(cosu)(n−p)/2
.e−n/4 tan

2 u → V = 2u
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C−2(n, p) : ρ(u) =
(cosu)2n

(cos 2u)(n+p/2)
→ V = π/2− 2u

k = 3 :

C3(n, p) : ρ(u) = (sin 3u)(n+p)/3.
[3− tan2 u

cosu

]n
→ V = 3u

C−3(n, p) : ρ(u) =
(cosu)(4n/3)

(cos 3u)(4n+3p)/9
.e(n/6). tan

2 u → V = π/2− 3u

k = 4 :

C4(n, p) : ρ(u) =
(sin 4u)(n+p)/4.(cos 2u)n/4

(cosu)3n/2
.e(−n/8). tan

2(u) → V = 4u

For k=4 and V = π/2− 4u, the expression ρ is complicated with real exponentials.
We find that many of these equations present real exponentials that complicate the com-
putation of the arc length. So we simplify the problem and give some selected examples
without real exponential in the three special cases k=1, -2 , 3.

6 The three special classes of generalized sinusoidal spirals :

In paper lll, l listed some classes of curves Ck(n, p) in polar parametric coordinates depend-

ing on three integer parameters k (angle index), n (Mc Laurin index) and p (pedal index)

with angle V equal to linear function of variable u : V = u, V = π/2− 2u and V =

3u.

Class C1(n, p) :

ρ = tann(u). sinp(u) θ = n tan(u) + p.u → V = u

or : ρ = cosn(u). sinp(u) θ = n tan(u)− (n + p).u → V = u

Class C2(n, p) :

ρ = (cosu)2n.(cos 2u)(p) θ = n tanu− 2(n + p).u→ V = π/2− 2u

Class C3(n, p) :

ρ =
[

cosu
3−tan2 u

]n
.(sin 3u)p θ = n. tan(u)− (n + 3p).u → V = 3u

Many of the polar curves in this paper belong to one of this three classes (k, n, p). Involute
of circle (1, 1, -1) and Tractrix spiral (1, -1, -1) to the first one (k=1), Catalan curve (-2,
1, -1) and Norwich spiral (-2, 1, 0) and its inverse (-2, -1, 0) to the second one (k=-2)
and the and the evolute of the inverse of Norwich spiral belongs to the last class (k=3).
In my notation this curve is C3(1, 0)
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7 Curves Nr 1 : Evolute of Tractrix spiral or Catalan’s curve.

The tractrix spiral is the central inverse of the involute of the circle and also the pedal of
the Hyperbolic spiral. Its polar parametric equations are :

ρ = cos t θ = tan t− t

Figure 2: Tractrix spiral and its evolute (Catalan’s curve)

dρ = − sin tdt dθ = tan2 tdt ds = tan tdt

tanV = − tan t V = −t Rc =
tan t

tan2 t− 1
= MC

In the triangle OMC, M current point and C the center of curvature, we have :

OC2 = OM2 +MC2 − 2ρ.MC cos M̂ OM = ρ = cos t

OC2 = cos2 t+
( tan t

tan2 t− 1

)2
− 2 cos t

( tan t

tan2 t− 1

)
sin t

OC2 =
1

(tan2 t− 1)2
.
(

(tan2 t− 1)2 cos2 t+ tan2 t− 2 cos t tan t sin t(tan2 t− 1)
)

OC2 =
1

(tan2 t− 1)2
.
(

(tan2 t− 1)(sin2 t− cos2 t− 2 sin2 t) + tan2 t
)

OC2 =
1

(tan2 t− 1)2
.
(

(tan2 t− 1)(− sin2 t− cos2 t) + tan2 t
)

OC2 =
1

(tan2 t− 1)2
.
(

(1− tan2 t) + tan2 t
)

=
1

(1− tan2 t)2
so : OC =

1

1− tan2 t
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For the polar angle we use sinus-relations in the triangle OMC :

MC

sin Ô
=

OC

sin M̂

tan t/(tan2 t− 1)

sin Ô
=

1/(tan2 t− 1)

sin M̂

Since M̂ = π/2 + t then sin M̂ = cos t and :

sin Ô = cos t. tan t = sin t

So Ô = t and the polar of point C is θc = (tan t− t)+ t = tan t. And the polar parametric

equations of C so of the evolute of the tractrix spiral are :

ρc = 1
1−tan2 t

θc = tan t or ρc = 1
1−θ2c

The evolute of the tractrix spiral is Catalan’s curve.

8 Curves Nr 2 : Evolute of the wheel for the circle and its
tangent.

In this section we search the polar parametric equations of the evolute of inverse of the
Norwich spiral (Syvester 1868) ρ(u) = 1/ cos2 u θ = tanu − 2u. This curve is also
the evolute of the wheel C−2(1, 0) associated with the circle as ground and a tangent as
base-line : ρ(u) = cos2 u θ = tanu− 2u.

Figure 3: The wheel for the circle-ground and a tangent as base line.

This curve has interesting properties and an arc length equal to the one of the circle :

ρ = a cos2 t θ = 2t− tan t V = 2t− π/2

s = a.t Rc =
a

tan2 t− 3
Rc =

a

tan2(s/a)− 3
Rc =

a.ρ

a− 4ρ

In the following we set a=1 to simplify.

dρ = −2 sin t cos tdt dθ = (tan2 t− 1)dt ds = dt
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tanV = − tan(π/2− 2t) V = 2t− Pi/2 Rc =
1

3− tan2 t
= MC

In the triangle OMC, M current point and C the center of curvature, we have :

OC2 = OM2 +MC2 − 2ρ.MC cos M̂ OM = ρ = cos2 t M̂ = 2t

OC2 = cos4 t+
1

(3− tan2 t)2
− 2 cos2 t

1

(3− tan2 t)
cos 2t

OC2 =
1

(3− tan2 t)2
((3− tan2 t)2 cos4 t− 2(3− tan2 t) cos2 t cos 2t+ 1)

OC2 =
1

(3− tan2 t)2
(16 cos4 t− 8 cos2 t+ 1− 16 cos4 t+ 12 cos2 t− 2 + 1)

OC2 =
4 cos2 t

(3− tan2 t)2
so : ρc =

2 cos t

3− tan2 t

As above for the polar angle we need sinus-relations in the triangle OMC :

MC

sin Ô
=

OC

sin M̂

1/(3− tan2 t)

sin Ô
=

2 cos t/(3− tan2 t)

sin M̂

Since M̂ = 2t then sin M̂ = sin 2t and :

sin Ô =
sin 2t

2 cos t
= sin t −→ Ô = t

And the polar angle of OC is :

θc = θM + t = (tan t− 2t) + t = tan t− t

Finally the polar parametric equations of the evolute of the curve are :

ρc = 2 cos t
3−tan2 t

θc = tan t− t

Figure 4: Inverse of Norwich spiral with its evolute
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9 Curve Nr 3 : The wheel for a cardioid-ground and axis of
symmetry as the base line

If the curve C3(1, 0) rolls on a line the pole O describes a cardioid, the line is its axis of
symmetry. By Steiner-Habich theorem (see part l) the pedal of this last curve is a wheel
for a cardioid as the ground and the base-line is the axis of symmetry. For the parametric
equations of the curve we just replace p by p+1, so :

C3(1, 1) −→ ρ(u) = a. cos2 u. sin 2u , θ = tanu− 4u

The arc length is [2a sinu]u0 (total length=4.a) and the radius of curvature is :

Rc =
ds

dθ + dV
=

a cosu

(tan2 u− 3)du+ (−3du)
=

a cosu

tan2 u− 6

So inflection points are in tanu = ±
√

6.
To find the ground we apply direct Gregory’s transformation (y = ρ, x =

∫
ρ.dθ) :

y = a cos2 u. sin 2u x = a

∫
cos2 u. sin 2u.(tan2 u− 3)du = a cos 2u cos2 u

These are equations of a cardioid with symmetry axis on x’x so our curve is a wheel for
the cardioid (the base line is the axis of symmetry of the cardioid). The two curves have
the same expression of arc length s = 2a sinu,total length is 4a. Its intrinsic equation is
(a is homotety parameter) :

R2
c .[7s

2 − 6a2]2 = [a2 − s2]3

Figure 5: Wheel rolling on a Cardioid base-line is the symmetry axis

10 The Cyclodes - J.J. Sylvester 1868

At the mathematic congress of 1868 in Norwich J.J. Syvester presented an interesting
infinite family of plane cuves beginning with a circle. He remarked that the successive
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involutes of a circle had some interesting properties that he exposed, later, in two papers
of Philosophical Magazine.
The arc length is always accessible and there is an equation, he named ”Arco-radial”,
which links the vector radius and the arc length.
The name of ”Cyclodes” was suggested by A. Cayley. The first generation of the cyclodes
are involutes of circle so all equals by rotation around the center of initial circle. The
second generation, involutes of involute of circles present a large variety of forms among
which we find some of this paper as Norwich Spiral or the second involute passing through
the origin i.e. the center io initial circle. Cyclodes never have points of inflection, real or
imaginary.
By definition the successive evolutes of any cyclode finish with the center of initial circle.
We use the notations of Sylvester to give some useful formulas. φ, r, s, θ denote the angle

Figure 6: Cyclodes of second generation -Transition case and Norwich spiral

position on initial circle of radius a, radius vector, arc length and vectorial angle of the
curve. Starting with the circle : s1 = a.φ and for successives generations of involutes :

s2 = a
φ2

2
+ bφ s3 + a

φ3

6
+ b

φ2

2
+ cφ si =

∫
si−1dφ

We choose O as origin of coordinates at the center of initial circle.
The perpendicular to the tangent is p and q the projection of the radius vector on the
tangent. We have :

q = −dp
dφ

p2 +
d2p

dφ2
=
ds

dφ
p2 + (

dp

dφ
)2 = r2

s′ =
ds

dφ
p′ =

dp

dφ
p′2 = r2 − p2

There is relations for r2i+1 :

r2i+1 = r2i − 2risi
dri
dsi

+ s2i

r2i+1 = (si − si−2 + si−4...)
2 + (si−1 − si−3 + ...)2

For the ith involute to a circle, the arc is any integer rational function F of φ :
∫
Fdφ of

degree (i+1) in φ and r2 is a similar function of degree 2i.
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11 The second generation of cyclodes

The second generation is not too complicated :

r2 = (a/2φ2 + b)2 + aφ2

ds

dφ
= a/2φ2 + (a+ b)

θ = arcsin(
aφ

r
) + φ

There is a loop or cusps according as a+b is positive or negative.

11.1 The transition case

Between this to possibilities we have the transition case when b=-a :

r2 =
a2

4
φ4 + a2 s =

a

6
φ2

So the arco-radial equation is : (r2 − a2)3 = 81
4 a

2s4.
This involute is the locus of the centres of all circles cutting orthogonally the originating
circle and the parent first involute since :

p = a(
φ2

2
− 1), s′ = p+ p” = a

φ2

2
, r2 = p2 + p′2 = a2

φ4

4
+ a2, and so : r2− a2 = s′2

11.2 Norwich spiral

This case corresponds to b = −a
2

r =
a

2
(φ2 + 1) s =

a

2
(
φ3 + 3φ

3
)

9as2 = (2r − a)(r + a)2 ← Arco-radial equation

This curve is so that the radius vector OM is equal to the radius of curvature at each

point. This is just the fact that using exprssion above :

Rc =
ds

dφ
= r

11.3 Cyclode passing through origin

In this case the cyclode has the following polar parmetric equations :

Cyclode 2nd generation through O : r = a. sinu/ cos2 u) and θ = 2 tanu− u

So this curve is C1(−2, 1).
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Figure 7: Parabola rolling on a fixed Spiral of Archimede

12 A parabola rolling on a fixed Spiral of Archimede

We know that the spiral of Archimede is a wheel for the parabola ground and the pole
runs along the axis coinciding with x’x. If we fix the spiral so that the parabola rolls on
it (in the same conditions) then the axis of the parabola passes constantly through the
origin O on the spiral (duality for couples wheel/ground). We begin with the curve C1

which generates the roulette.
The line MD is the tangent to the involute of circle (fixed) antipedal of the Spiral of

Archimede. OM= p.t and HM = pt2/2 so the point F, S and A (see fig. 6) describes
respectively curves with following polar equations (same polar angle as the spiral shifted
of −π/2).

F: r = (p/2)(θ2 − 1) → C−2(−1, 0)

S: r = (p/2).θ2 → C1(−2, 1)

A: r = (p/2).(θ2 + 1)

The locii of C, H, D are the respective antipedals of these three curves :

C: r = (p/2)/ cos2 u) and θ = tanu− 2u → C−2(−1, 0)

H : r = (p/2) sinu/ cos2 u) and θ = 2 tanu− u → C1(−2, 1)

D : r2 = p2/4(1 + 6θ2 + θ4) and θ = θM + arctan(2/θ)− π/2 /∈ Ck(n, p)

All points on the axis of the parabola run on a Galileo spiral : r = (p/2)(t2 − λ). With
the parameter λ = 0 at S so r = (p/2)(t2). For the focus F : r = (p/2)(t2 − 1) and we
know that the antipedal of this curve is the Norwich spiral.
The parallel to the axis of the parabola through M (instantaneous center of rotation) is
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tangent to the antipedal of the spiral of Archimede which is the involute of the circle in
the fixed plane. The motion generated by a parabola rolling on a fixed spiral of Archimede
is equivalent to the rolling of a line on the involute of circle and so the locii of points on
this line MC are involutes of involute of circle.
Norwich spiral, the locus of C, is one. The curve decribed by H, on tangent at the top of
the parabola, in the fixed plane is an involute of an involute of circle passing through the
origin O.
The curves described by F and C are in the class C−2(n, p) and the curves of S and H are
in the class C1(n, p) also containing the spiral and the involute of circle in the fixed plane.

13 The ground rolling on the fixed wheel

In the last section we have seen an example of rolling ground on a fixed wheel. We gen-
eralize now this to any couple of wheel/ground associated by Gregory’s transformation.
We start here with the wheel and its pole O. The ground tangent at point M and the base
line linked passes continually through the pole O. Another curve in the fixed plane will
be useful : the antipedal of the wheel so the envelope of the perpendicular to the vector
radius OM at M.

Figure 8: The general case of Steiner Habich theorem and curves correspondances

This figure, the rectangle of curves, which is an instantaneous symmetry picture of the
movement evoluting with radius at current point OM = ρwheel = yground, as distance
between the two parallel lines, can be read in two different ways (fixing ground or fixing
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wheel) :

1 - The ground and base line are fixed : given a curve (C1) - and a pole M linked to
it - rolling on a base line, the roulette of M is the ground for the pedal of (C1) w.r.t. M
and placed in correct position of tangency by the symmetry w.r.t. the mediator (∆) of
the vector radius OM. This is Steiner Habich theorem.

2 - The wheel and its pole O are fixed : the ground rolls on the wheel, the base line
passes through O constantly. The antipedal of the wheel is the envelope of the perpen-
dicular to OM at M (in the fixed plane). The movement is equivalent to the one of a
line rolling without slipping on the antipedal. All points on tangent line MP : M1,M1, ...
describe in the fixed plane an involute of this antipedal (C ′1). And the points on KO :
L1, L1, ... are pedals of Mi locii. Note that the antipedal is nothing else than the curve
(C1) transformed by symmetry w.r.t. the mediator (∆) of radius vector OM. That sym-
metry places the curve (C ′1) in the position of the antipedal of the wheel. This can be
considered as a kind of reciproque of the theorem of Steiner/Habich.

The two movements : wheel (rolling) on ground (fixed) and ground (rolling) on wheel
(fixed) are direct/inverse corresponding to pedal/antipedal. The angle V is a common
characteristic of all curves since the transformations, pedal, rolling and symmetry pre-
serve this angle.

Let’s summarize :

1 - Ground fixed : (C1) rolls on OK, pedal/M gives the wheel in tangent rolling po-
sition by pedal composed with symmetry (∆).
2 - Wheel fixed : MP rolls on antipedal (C ′1) of the fixed wheel. (C ′1) is the symmetric
of (C1) w.r.t. (∆).
3 - Angle V between radius vector and tangent (up to sign) is common to all curves.
4 - Reversibility of the movements (ground or wheel fixed) is equivalent to performing a
symmetry of axis (∆).
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