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Abstract

Some plane curves are presented with various properties using elementary geometry,
pedals, Mc Laurin and Gregory (GT/GT−1) transformations.

1 Antipedal and Euler normal equation of a line

This is a tangential representation of a curve (C) in orthonormal coordinates in the plane. This

equation is the tangential equation of the antipedal of the curve p = p(θ) in polar coordinates.

x cos θ + y sin θ − p(θ) = 0

The distance OP orthogonal to the tangent from the the origin of coordinates is p(θ) in
polar (p, θ). So the curve (C) is the antipedal of this last curve. The parametric equations
of the this antipedal are :

x = p(θ) cos θ − p′(θ) sin θ y = p(θ) sin θ + p′(θ) cos θ

A classical example is the one of cycloidals considered as antipedals of rosaces ρ =
cos kθ or ρ = sin kθ. Parametric equations are - here p(θ) = cos kθ), k is a rational
parameter ∈ Q - :

x = cos kθ. cos θ + k sin kθ. sin θ y = cos kθ. sin θ − k sin kθ. cos θ

2 The antipedal of Clairaut’ curves

These curves are defined in polar coordinates as ρ = a cosn θ or ρ = a sinn θ. We set a=1

w.l.o.g. The antipedals are the envelopes of the lines :

x cos θ + y sin θ − cosn θ = 0

The envelope of this line depending of parameter θ is given by :

x = cosn−1 θ[n+ (1− n) cos2 θ] and y = (1− n) cosn θ sin θ

1



2.1 The first cases of antipedals of p(θ) = cosn θ.

With the above formulas, we list the cases n ∈ [−3,+3] :

• n = 0 : the circle x = cos θ, y = sin θ.

• n = 1 : x=1, y=0 reduced to a point.

• n = 2 : x = cos θ(1 + sin2 θ), y = − cos2 θ sin θ, an involute of the astroid passing
through origin.

• n = 3 : x = cos2 θ(1 + 2 sin2 θ), y = −2 cos3 θ sin θ, the deltoid.

Figure 1: Antipedals of p(θ) = cos θn for n=+2 to +6

• n = −1 Parabola x = cos 2θ
cos2 θ

= 1 − tan2 θ, y = 2 tan θ x = 1 − (y/2)2 the

antipedal of the line : p = 1
cosθ

.

• n = −2 : x = 1−3 sin2 θ
cos3 θ

, y = 3 sin θ
cos2 θ

, antipedal of p = 1
cos2θ

.

• n = −3 : x = 1−4 sin2 θ
cos4 θ

, y = 4 sin θ
cos3 θ

antipedal of p = 1
cos3θ

Figure 2: Antipedals of p(θ) = cos θn for n=-1 to -6

• n = −p : x = 1−(p+1) sin2 θ
cosp+1 θ

, y = (p+ 1) sin θ
cosp θ

, antipedal of p = 1
cosp θ

.

2.2 The ground corresponding to Curves C1(n, 1)

Curves C1(n, 1) are in the class C1(n, p), so have the following polar parametric equations:

ρ = (1− n) cosn u sinu

θ = n tanu− (n+ 1)u
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Where n and p, integers, are McLaurin and pedal index. Here p=1 and by direct Gregory’s
transformation (y = ρ, x =

∫
ρdθ) we get :

x =

∫
(1− n) cosn u sinu(n tan2 u− 1)du

So the parametric equations of the ground are :

x = (1− n) cosn+1 u+ n cosn−1 u

y = (1− n) cosn u sinu

Up to a factor (1-n) the curve is the same as the antipedal of p = cosn θ. By application
of Steiner Habich theorem the roulette of the pole of

ρ = (1− n) cosn u, θ = n tanu− nu ←− C1(n, 0)

is the curve (x, y) above. Just replace p=0 by p=1 : C1(n, 0) becomes C1(n, 1) the pedal
which is a wheel for ground the roulette of C1(n, 0).

ρ = (1− n) cosn u sinu, θ = n tanu− (n+ 1)u ←− C1(n, 1)

3 The antipedal of Galilean spirals p(θ) = θ2 + h.

Equation of these curves in polar coordinates is p(θ) = θ2 + h where h is a constant

parameter. The antipedals are the envelopes of the lines :

x cos θ + y sin θ − θ2 − h = 0

The envelope of this line depending of parameter θ is given by :

x = (θ2 + h) cos θ − 2θ sin θ and y = (θ2 + h) sin θ + 2θ cos θ (1)

In polar coordinate (ρ, φ) the parametric equations are :

ρ2 = (θ2 + h)2 + 4θ2 and tanφ = y/x =
(θ2 + h) sin θ + 2θ cos θ

(θ2 + h) cos θ − 2θ sin θ
(2)

These curves are the second involutes of the circle so are parallele curves in the plane.
Two special cases correspond to h=0 and h= -1. If we set t = tanu then :

h = 0 : ρ = 4
sinu

cos2 u
θ = 2 tanu−u+π/2 −→ C1(−2, 1) Involute through origin

and

h = -1 : ρ =
1

cos2 u
θ = tanu− 2u −→ C−2(1, 0) Norwich Spiral

For this very special spiral, using polar formulas above (2), we have :

ρ2 = (θ2 − 1)2 + 4θ2 = (θ2 + 1)2

tanφ = y/x =
(θ2 − 1) sin θ + 2θ cos θ

(θ2 − 1) cos θ − 2θ sin θ
=

sin θ
cos θ
− 2θ

1−θ2

1 + sin θ
cos θ

2θ
1−θ2

If we set θ = tanu then we get tanφ = tan(θ − 2.u) so φ = θ − 2.u = tanu − 2.u. And
ρ = 1 + θ2 = 1

cos2 u
.
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Figure 3: Antipedals of p(θ) = θ2 + h for h = −1, 0,+1 and common evolute (= involute of
circle).

4 A quartic and its singular and ordinary focii in bipolar and
tripolar coordinates.

The two following curves 1 and 2 are identical up to a dilatation :

4.1 Curve 1 defined by tripolar coordinates

OM = |MF1 −MF ′1|

O is the midpoint of F1F
′
1 = 2d.

(x2 + y2)2 =
4

3
d2(3x2 − y2)

or :

ρ2 =
4d2

3

sin 3θ

sin θ

4.2 Curve 2 defined by bipolar coordinates

1

MF 2
2

+
1

MF
′2
2

=
2

d2

Distance F1F
′
1 = 2d.

(x2 + y2)2 = d2(3x2 − y2)

or :

ρ2 = d2
sin 3θ

sin θ
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These curves have the same equation up to a dilation and are hyperbolic lemniscates with general

equation :

(x2 + y2)2 = b2x2 − a2y2

Our two curves have special values of a and b with a/b =
√

3 :

Curve 1 : a = 2d and b = 2d√
3

Curve 2 : a = d
√

3 and b = d
On the x-axis hyperbolic lemniscates have four real focii :

1 - a pair of ordinary focii at : ± ab√
a2+b2

2 - a pair of singular focii at : ±
√
a2+b2

2

For curve 1 this gives : ordinary ±d, singular ±2d/
√

3
For curve 2 this gives : ordinary ±d

√
3/2, singular ±d.

Since the distance between focii for the two curves is the same length 2d,

Then the curve 1 is defined w.r.t the ordinary focii, and the curve 2 is
defined w.r.t the singular focii.

Figure 4: Tripolar and Bipolar definitions of the same plane quartic

ρ2
1(θ) =

4d2

3
.
sin 3θ

sin θ

ρ2
2(θ) = d2.

sin 3θ

sin θ
so : ρ1(θ) = ρ2(θ).

2√
3
.

5 Caustic of the tractrix for light coming along y-axis

The tractrix is known since beginning of calculus, its parametric equations are :

x = t− tanh t y =
1

cosh t
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Figure 5: Tractrix - anticaustic - catacaustic for parallel rays of light.

The anti-caustic is the locus of the symetrical of the foot of yM on x-axis w.r.t. the cur-
rent tangent of the tractrix at M. We have tan γ = dy/dx = (sinh t/ cosh2 t)/(tanh2 t) =
1/ sinh t. And so cos γ = tanh t and sin γ = 1/ cosh t. This curve has two cups and can
be computed by :

X = x− 2y. sin γ cos γ Y = 2y. cos2 t

x = t+ tanh t− 2 tanh3 t y =
2 tanh2 t

cosh t

The arc length of this anticaustic can be computed :

ds = (2− 3 tanh2 t)dt and s =

∫ t

0

ds = [3 tanh t− t]t0 = 3 tanh t− t

The radius of curvature is :

Rc =
ds

dγ
=

(2− 3 tanh2 t)dt

dγ

dγ =
2.dt

cosh t
so : Rc =

1

2
(

3

cosh t
− cosh t)

This helps to find the parametric equations of the evolute of the this last curve : it is the
caustic of the tractrix for light rays parallel to y-axis.

x = t− tanh t+ tanh3 t y =
1

16
(
15 + cosh 4t

cosh3 t
)

6 Parallel curves to the catenary.

The equation of the plane catenary is

x = t y = cosh t = coshx

On the current normal of the catenary we set a point MH=h a constant, so H moves on a
parallele curve of the catenary. Elementary triangle : tan γ = dy

dx
= sinh t, cos γ = 1/ cosh t

and sin γ = tanh t. It follows easily that the locus of H is:

xH = t+ h. tanh t yH = cosh t− h/ cosh t −→ sH = tan v − v
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Figure 6: Parallele curves to the catenary and common evolute.

7 The syntractrix Catenary and Tractrix.

The Tractrix has, by definition, a constant tangent = 1 and the syntractrix is the locus
of a point fixed on the tangent to the tractrix so that MT =k.1, where M is on the
syntractrix and T on x’x. Poleni’s curve is the case k=2. The general parametric equation
of syntractrices depending on k are :

x(t) = t− k tanh t and y(t) = k/ cosh t

Figure 7: Syntractrices.

8 Curves in form of a water drop - Cardioid - parabola

This curve is not unique and we can find many as propositions as we want for the form of
a water drop curve. It must have a symetry axis, a round end and a cusp end. So I will
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Figure 8: Three examples of drop curves

use two methods to generate water drop curves. The three above curves have repectively
parametric equations :

ρ(t) = 5/3− cos t and : θ(t) = −t+ 4 arctan(2 tan t/2) (A)

X(t) = (cos(t) +
√

cos 2t) cos t (B)

Y (t) = (cos(t) +
√

cos 2t) sin t

Xc =
3(2 cos t+ cos 2t)

5 + 4 cos t
(C)

Y c =
3(2 sin t+ sin 2t)

5 + 4 cos t

The first (A) is a wheel for the cycloid cusps upward (so has same length as an arch), the
second (B) is an inverse of parabola and the third (C) is an inverse of a cardioid pole at
the center of fixed circle.

8.1 Using a wheel for the cycloid

We have seen in paper V that a drop form can roll on the cycloid so that the pole run on
x-axis. This is curve (A).

Figure 9: Drop curve as a wheel for the cycloid

8.2 Starting from a Parabola

It is possible by inversion to get a drop curve from a parabola. We set the center of
inversion at the point of intersection of symetry axis and directrix. The result is in the
fig.6

8.3 Starting from a Cardioid.

The cardioid is not a drop, since the cusp is turned inside, but by inversion we may obtain
a solution. This is easily done and the result is on the fig. 5.
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Figure 10: Drop curves from parabola by inversion

Figure 11: Drop curve as inverse of a cardioid

9 A curve and its evolute

Figure 12: A curve and its evolute

If a tractrix spiral : ρ = cos t, θ = tan t− t rolls on a fixed line x’x the roulette of the
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pole is :

x =

∫
ds− ρ cosV and y = ρ sinV with ds = tan tdt

Here, since the tractrix spiral belongs to class C1(n, p) for n=1, p=o, the angle V=t, the
parameter.

x = cos2 t− log | cos t| and y = cos t sin t

Now we look for a curve such that the segment cut on x-axis by the current tangent and
normal is a constant length a. Subtangent is St = y/y′ and subnormal is Sn = yy′ so the
geometric property is :

St+ Sn = a = y/y′ + yy′ = (y/y′)(1 + y′2)

Since y′ = tan t this equation gives :

y =
ay′

1 + y′2
=

a tan t

1 + tan2 t
= a cos t sin t

And y′ = dy
dx

= tan t and dx =
∫
dy/ tan t solution of this equation is :

x = cos2 t+ log | sin t| y = cos t sin t

And the wheel w.r.t. x-axis is :

Figure 13: Wheels for the curve and its evolute

Figure 14: Wheels for the curve and for its evolute
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ρ = cos t sin t, θ = tan t− 2t ∈ C1(n, p) for n = p = 1

This curve is the pedal of the tractrix spiral (ρ = cos t, θ = tan t− t) so C1(1,0).
By Steiner Habich theorem, this pedal is the wheel for the roulette of the pole of the
tractrix spiral. The evolute of the curve : x = cos2 t+ log | sin t| y = cos t sin t is :

x = cos2 t+ log | sin t| y = cos3 t/ sin t

And the wheel for this last curve w.r.t. x-axis is :

ρ1 = cos3 t/ sin t θ1 = 3 tan t− 2t ∈ C1(n, p) for n = 3, p = −1

We used to find this wheel the inverse of Gregory’s Transformation TG−1 :

y = ρ, x =

∫
dx

y

The curve (roulette of tractrix spiral) is the first of a series with the following wheels :

ρ = cosn t sin t θ = n tan t− (n+ 1)t

and the grounds given by direct Gregory’s transformation :

y = ρ x =

∫
ρdθ

The cases n=2 corresponds to a ground involute of Astroid passing through origin and
n=3 to a Deltoid-ground. These are illustrated below.

Figure 15: A whell for the involute of astroid passing through the origin.

Figure 16: A wheel for the deltoid.
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