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Abstract

Some examples of general roulettes and envelopes of lines in the plane are presented
specially by rolling curves as wheels adapted to a circular ground. We use classes of curves
in C1(n, p), C−2∗(n, p), C3(n, p) to exploit the simple lineary relation between θ and V that
facilitates the calculations.

1 General equation of a roulette in polar coordinates

The general roulette in the plane is the locus of a point M fixed to a curve (C1) rolling without

slipping on a another curve (C),base in the fixed plane. A special case is when the curve (C) is

a line in the fixed plane. It is convenient to use polar coordinates ρ = ρ(θ) with pole at M to

simplify the calculations.

A crucial point is the possibility of a simple form for the length of the two curves and for angle

V of (C) and (C1) . Equal expression of arc length is rarely satisfied for arbitrarily selected

curves. But for couples of curves associated by Gregory’s transformation - so with same arc s -

(or curves associated with the same curve by this transformation) it is possible. And curves of

the class Ck(n, p) are good candidates to get easy expressions for V and V1. The base curve in

Figure 1: Roulette of a point M linked to a curve rolling on a base curve in the fixed plane
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fixed plane with origin O of coordinates is ρ(θ) in polar (ρ, θ). The current tangent to the
curve at I point of tangential contact with the rolling curve r(θ1) in polar coordinates.
The parametric equations of the locus the point M linked to the mobille plane are :

−−→
OM =

−→
OI +

−−→
IM = −→ρ +−→r

x = ρ(θ) cos θ + r(θ1) cosφ y = ρ(θ) sin θ + r(θ1) sinφ

φ = θ + V ± V1 where φ = (
−→
Ox,
−−→
IM)

and V and V1 are, as usual, the angles between vector radius and orientated tangent of
base and rolling curve. The double sign ± depends on the inside or outside rolling (as for
hypo-or epi-cycloidals).
For rolling curves without slipping the arc lengths are equal so : s(u) = s1(v). This
constraint on integrals is the reason of the difficulty to give exact calculations in the
general case.
The theory of roulettes was a subject of study in the 19th century but has lost some of
its splendour but it is an interesting challenge because its a part of geometry.

2 Examples of applications to generalized sinusoidal spirals

The formulae in the above section can be used when curves are defined in polar coordinates
with angle V depending of the same parameter u in linear form V = ku or V = π/2− ku.
Where V is the angle between vector radius and oriented tangent. So these curves are
generalized sinusoidal spirals : Ck(n, p), k, n and p are respectively angle, Maclaurin and
pedal index (k, n, p integers or eventually rational).
We have listed the first cases of these classes of curves (see part III) which have an es-
sential property that it can be parametrized in polar coordinates by the angle u linearly
linked with V so have a natural tangent parameter u. These curves have a rational el-
ement of arc ds (because of V= f(u), linear), sometime integrable. The most important
constraint is the identity of the expressions of the arcs s(u) = s1(u) that must be verified
systematically in the examples.

We know that the for some subclasses values corresponding to k=1 (V=u), k=-2
(V = π/2 − 2.u) and k=3 (V=3.u) this three infinite classes give us interesting curves
without real exponentials.

3 The curves chosen to illustrate the roulettes of generalized
sinusoidal spirals

To begin we select a curve closely related to the circle : the wheel for a ground circle and
a tangent as the base line. This curve has the following polar parametric equations :

ρ = 2 cos2 u θ = tanu− 2u

It is the inverse w.r.t. the pole of Norwich spiral and belongs to the class C−2(n, p) for
n=-1 an p= 0 so C−2(−1, 0) and tanV = π/2− 2u and arc length : s=2.u. Note that u is
the angle in the center of the circle ground. V is a linear expression of u and that allows
simpler calculations with above formulas.
The curve above that I call ”spiral base” is the fixed base-curve on which a curve rolls
and generates a roulette. In fact here we use only circles as rolling curves.
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We know that the circle ρ = 1 + cos 2u = 2 cos2 u with same arc length s=2.u and same
parameter u.
We present two cases of rolling circles (C1) on the base spiral for R=1 and R=1/2.

3.1 Rolling circle R=1

We know - by Gregory’s transformation - that the circle with R=1 has same arc: s1(u) =
2u as the base spiral since this spiral is a wheel for this circle and angle in the center is
double the inscribed angle. We look for a roulette of the point M on the circle so we need
two forms of polar equation and the value of Angle V1 :
For M in A at beginning of motion :

1→ r = 2 sinu θ = u→ tanV1 = tanu so V1 = u

And for M opposit to A at beginning of motion :

2→ r = 2 cosu θ = u→ tanV1 = tan(u− π/2) so V1 = u− π/2

3.2 Rolling circle R=1/2

The circle R=1/2, r = (1/2) sinu, θ = u has an arc : s1(u) = u so if we modify the
equation ρ = (1/2) sin 2u, θ = 2u using same u as parameter and preserve the equality of
rolling arcs, an essential constraint.
For M in A at beginning of motion :

3→ r = (1/2) sin 2u θ = 2u→ tanV1 = tan 2u so V1 = 2u

And for M opposit to A at beginning of motion :

4→ r = (1/2) cos 2u θ = 2u→ tanV1 = −1/ tan 2u = tan(2u−π/2) so V1 = 2u−π/2

Nota : This method may be generalized to circle R= p/q (rational) instead of 1/2 because
of the property of angular at center and length of a circle arc (see fig. 7).

The point M is at a cusp when the circle rolls on an inflexion point of the base spi-
ral which has two inflexion points corresponding to the tanu = ±

√
3. On some drawings

(fig. 5) a position of the rolling circle is at an inflexion point (ICR) so M is at a cusp
(Plucker relation). I use polar expressions (ρM , θM) for the roulette M.

3.3 A - Rolling circle R=1/2 (inside) on base Spiral and M opposit to A.

At the beginning of motion the fixed point M is diametrically opposed to A (fig. 2 bottom
middle). The two curves are a couple of rolling curves around two poles so, if we fix one
curve (the base), the pole of other runs around a circle centered in O. The application of
formulae of section 1 gives :

φ = tanu− 2u+ (π/2− 2u) + (2u+ π/2)

so
XM = 2 cos2 u cos(2u− tanu)− cos 2u cos(2u− tanu)

YM = −2 cos2 u sin(2u− tanu) + cos 2u sin(2u− tanu)

which confirms the result : a circle centered at O with R=1.
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Figure 2: Roulette of a point on circle 1/2 or R=1 rolling inside/outside on base Spiral and M
at A or opposit to A (23 cases). Base spiral : ρ = cos2 u, θ = tanu− 2u

3.4 B - Rolling circle R=1/2 inside on base Spiral and M at A.

At the beginning of motion the fixed point M is in A (fig. 3). The point L is on the
circle (O, 1) and O, L and I the instant center of rotation (ICR) are aligned. The line

MD is tangent to the roulette and orthogonal to IM. The angle M̂IL is right since ML is
a diameter. If C is at intersection circle (O, R=1) with MD : we have OC=OL=LM and
CM is parallele to OL : OCML is a rhombus. So MC is constant. That’s the geometric
definition of the tractrix spiral. The formulae of section 1 give

φ = tanu− 2u+ (π/2− 2u) + 2u

so ρ = 2 cosu and θ = tanu− u. Mathematica gives :

XM = 2 cos2 u cos(2u− tanu) + sin 2u sin(2u− tanu)

YM = cos(2u− tanu) sin 2u− 2 cos2 u sin(2u− tanu)

but it may be reduced to the same equations.

3.5 C - Rolling circle R=1 (inside) on base Spiral and M at O opposit to A.

At beginning of motion M is opposit to A on the circle R=1. This case is the inverse
motion of Gregory’s transformation (couple ground/wheel). The wheel is fixed and the
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Figure 3: Tractrix spiral as roulette of a point on circle 1/2 on fixed base spiral.

circle rolls on the base spiral. Then the tangent to the circle at M passes constantly
through the pole O (see fig.4).

In the rectangle OIMP the diagonal is cos t and angle ÔMP = u so PO = cosu. sinu
and since OI is perpedicular to OP then θ = tanu − 2u + π/2. This geometric result is
confirmed by the formulas in first section :

φ = tanu− 2u+ (π/2− 2u)− u− π/2

Figure 4: Pedal of Tractrix spiral as roulette of a point on circle 1 on fixed base spiral.

The locus of the pole or roulette is the following curve :

ρ = 2 sinu cosu θ = tanu− 2u+ π/2 −→ C1(1,−2)

This same curve is also the pedal of the Tractrix spiral with equations :

ρ = 2 cosu θ = tanu− u −→ C1(1,−1) with p (pedal index)→ p− 1.
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3.6 D - Rolling circle R=1 (outside) on base Spiral and M opposit to A.

Point M is opposit to A at the beginning of the motion. Formulae of section 1 give :

tanu− 2u+ (π/2− 2u)− (u+ π/2)

so the parametric equations are :

XM = cos2 u cos(2u− tanu) + cosu sin(5u− tanu)

YM = − cos2 u sin(2u− tanu)− cosu cos(5u− tanu)

This curve seems to have a rational vector radius :

ρ2M =
1

2
cos2 u(3 + 3 cos 2u+ 2 cos 4u) 0 ≤ ρ ≤ 2

tan θ =
YM
XM

=
− cosu sin(2u− tanu)− cos(5u− tanu)

cosu cos(2u− tanu) + sin(5u− tanu)

I don’t know if this expression of tan θ can be reduce to a simpler formula, same remark
for the other curves below.

3.7 E - Rolling circle R=1 (outside) on base Spiral and M in A.

Point M is in A at the beginning of the motion. We fix the first curve when the circle
rolls without slipping. Here the formulae of section 1 are necessary and give :

φ = tanu− 2u+ (π/2− 2u)− u

The parametic equations of the roulette of M are :

XM = cos2 u cos(2u− tanu) + sinu sin(5u− tanu)

YM = cos(5u− tanu) sinu− cos2 u sin(2u− tanu)

ρ2M =
1

8
(9 + 2 cos 2u− cos 4u− 2 cos 6u)

tan θM =
cos(5u− tanu) sinu− cos2 u sin(2u− tanu)

cos2 u cos(2u− tanu) + sinu sin(5u− tanu)

The curve is drawn on fig. 2 and has a big loop, two cusps and two branches around
the asymptotic point at origin O.

3.8 F - Rolling circle R=1/2 (outside) on base Spiral and M in A.

Point M is opposit to A at the beginning of the motion. Formulae of section 1 give :

φ = tanu− 2u+ (π/2− 2u)− 2u

so the parametric equations are :

XM = 2 cos2 u cos(2u− tanu) + sin 2u sin(6u− tanu)

YM = cos(6u− tanu) sin 2u− 2 cos2 u sin(2u− tanu)

ρ2M = 2 cos2 u(2 + cos 2u− cos 6u)

tan θM =
cos(6u− tanu) sinu− cosu sin(2u− tanu)

cosu cos(2u− tanu) + sinu sin(6u− tanu)
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Figure 5: Roulettes point on a circle R=1 on base spiral and circle in position for the cusp.

3.9 G - Rolling circle R=1/2 (outside) on base Spiral and M opposit to A.

Point M is opposit to A at the beginning of the motion. Formulae of section 1 give :

φ = tanu− 2u+ (π/2− 2u)− (π/2 + 2u)

so the parametric equations are :

XM = 2 cos2 u cos(2u− tanu) + cos 2u cos(6u− tanu)

YM = −2 cos2 u sin(2u− tanu)− cos 2u sin(6u− tanu)

ρ2M =
1

2
(5 + 6 cos 2u+ 4 cos 4u+ 2 cos 6u+ cos 8u)

tan θM =
−2 cos2 u sin(2u− tanu)− cos 2u sin(6u− tanu)

2 cos2 u cos(2u− tanu) + cos 2u cos(6u− tanu)

3.10 H - Rolling circle R=1 (inside) on base Spiral and M in A.

Point M is opposit to A at the beginning of the motion. Formulae of section 1 give :

φ = tanu− 2u+ (π/2− 2u) + u

so the parametric equations are :

XM = 2 cos2 u cos(2u− tanu) + 2 sinu sin(3u− tanu)

YM = 2 cos(3u− tanu) sinu− 2 cos2 u sin(2u− tanu)

ρ2M =
1

2
(9− cos 4u) 2 ≤ ρ ≤

√
5

tan θM =
2 cos(3u− tanu) sinu− 2 cos2 u sin(2u− tanu)

2 cos2 u cos(2u− tanu) + 2 sinu sin(3u− tanu)

tan θM =
−4 sin(2u− tanu) + sin(4u− tanu) + sin(tanu)

4 cos(2u− tanu)− cos(4u− tanu) + cos(tanu)
given by Mathematica.
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4 Roulettes of circles on the first curve of Euler

Another example that can be illustrated using formulae of section 1 is to use as the base
the curve found by Euler which has same length as the circle (3). Its polar parametric
equations (given in part II) are :

ρ =
2√
3

+ cos t θ = t− 4. arctan
[
(2−

√
3). tan

t

2

]
With the same procedure as for inverse of Norwich spiral in previous section, but we don’t
list the cases here, we obtain the eight curves in fig. 6 with shapes similar to those in fig.
2 of section 3.

Figure 6: Roulette on Euler curve - rolling curves are circles R=1/2 or R=1.

4.1 Rolling circles on Euler curve

Using formulae of section 1 it is possible to draw the curves for dilated or reduced circles
in commensurable proportion k with the circle in the definition of Euler curves : with
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equal arc as this circle. By analogy with classical cycloidals fig. 7 show some simple
examples for 1/4, 1/6 and 3/2.

Figure 7: Roulette on Euler curve - rolling curves are circles R=1/4, 1/6 or 3/2.

9



5 Envelopes of line linked to a circle rolling on another circle in
the plane.

Figure 8: Roulette and envelopes of lines linked to rolling curve

We turn now to a problem of envelopes in relation with epi- or hypo-cycloidals. A
fixed plane base circle centered at origin O with radius R and another circle af radius r
rolling on the base and we look for the envelope of a line linked to the rolling circle. Since
Descartes, we know that the point of contact between this line and its envelope is the
orthogonal projection of the instant center of rotation of the motion, the tangent contact
between the circles. As for epi- or hypo-cycloidals we distinguish the two cases rolling

Figure 9: Envelope of a straight line driven by the rolling of a circle R=1/k on a base circle
R=1

inside or outside the base circle. These envelopes have a simple relation with classical
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ponctually generated cycloidals, locus of a point on the rolling circle.

Figure 10: Envelope of a straight line driven by rolling of a circle on another circle.

At the beginning of motion the line is orthogonal to x-axis at distance d from the center
of the rolling circle. We set R=1 and R

r
= k for Epicycloidals (for hypocycloidals, take:

-k) M is the projection of the I the instantaneous center of rotation (ICR) point of tan-
gent contact between base and rolling curves. Some calculations give the equations of the
envelope in the two case of rolling, if k ∈ N .

For Epi-cycloidals:

xM = cos t+ 1
k
.(d+ cos(k.t)) cos(t+ k.t)

yM = sin t+ 1
k
.(d+ cos(k.t)) sin(t+ k.t)

For hypo-cycloidals (k → −k) :

x′M = cos t− 1
k
.(d+ cos(−k.t)) cos(t− k.t)

y′M = sin t+ 1
k
.(d+ cos(−k.t)) sin(t− k.t)
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These envelopes are indeed involutes of cycloidals with twice numbers of arches. This is obvious
that a diameter of the rolling circle has for envelope a cycloidal of the same type with a coeffi-
cient k’=2.k with twice the numbers of arches. This is true also for the usual cycloid for a point
of a circle rolling on a base line.

Figure 11: Roulette of inverse of Norwich spiral on a line = Involute of the cycloid and on a
circle = Involute of Nephroid.

So we can state the following result :

Property 1 : ”The envelope of a line linked to a curve rolling on another fixed curve in the
plane, then parallele lines will envelope parallele curves of the roulette”
Since the common normal passes through the Instantaneous Center of Rotation (IRC), the
property is almost obvious.

6 Using wheels for circular ground to generate the envelope of
a line in cycloidal motion.

The wheels for a circle ground, presented in my paper II, have been studied by Euler and later by
J. Serret. These curves may be used to generate by a roulette the involutes of general cycloidals.
The envelopes of lines in a rolling motion (a curve rolling on another curve) may be generated by
a ponctual roulette. This is the consequence of the dfinition of Gregory’s inverse transformation.
We consider the wheel associated with the rolling curve and the line and we state the :
Property 2 : ”The envelope of a line (∆) linked to a curve (C1) rolling on a base curve (C) is

Figure 12: Involutes of astroid as the roulette of pole of some closed wheels for a circle ground
on a circle R=1.

also the roulette of pole of the wheel - associated with the couple [(C1), (∆)] - which rolls on the
base curve.”
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There are initial conditions for these motions, the same as for Gregory’s transformation. The
figures illustrate this property and can be considered as a visual proof.

Figure 13: Involute of cycloid as roulette of inverse of Norwich spiral on a line.
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