Special cases of $C_k(n, p)$ with explicit expressions of $\rho = f(\theta)$.

- Part XXIX -

C. Masurel

07/03/2024

Abstract

From the classes of curves $C_k(n,p)$, generalizations of sinusoidal spirals, we extract some special series of curves with explicit polar equation $\rho = f(\theta)$. Curves in $C_1(n,p)$, $C_{-2*}(n,p)$, $C_3(n,p)$ have simple parametric equation with a natural parameter u linked to polar angle θ by a linear relation : V = u, $V = \pi/2 - 2u$ and V = 3u.

1 Curves with angle $\theta = n \tan(u) + p.u$ and V = linear function of u

The curves $C_k(n,p)$ are generalizations of the set sinusoidal spirals: $\rho^n = \sin n\theta$ or $\cos n\theta$. We know that sinusoidal spirals are wheels for the Curves of Ribaucour w.r.t. to the natural base. They defined as the curves with special angle parametrization $\theta = n \tan(u) + p \cdot u$ and a condition on the angle V between vector radius and current tangent.

Among these set of curves we find some special cases when the explicit polar equation $\rho = f(\theta)$ is possible. This happens when p=0 in the parametric expression of the angle and the $\theta = n$. $\tan u$.

2 The set of cuves $C_1(n,p)$ with V=u

These curves have parametric equations:

$$\rho = \frac{\sin^{(p+n)}(u)}{\cos^n(u)} \qquad \theta = n\tan(u) + p.u$$

In this case if p = 0 then $\rho = \tan u^n$ so the polar equation is $\rho = (\frac{\theta}{n})$. This is a parabola spiral general studied by Torricelli and Fermat. This case is in some sense trivial since Mc Laurin transformation is equivalent to a homothety.

These special class of parabolic spirals have parametric equations:

$$\rho = \frac{\sin^n(u)}{\cos^n(u)} = \tan^n u \qquad \theta = n \tan(u)$$

And so:

$$\rho = \left(\frac{\theta}{n}\right)^n = \frac{1}{n^n} \cdot \theta^n = K \cdot \theta^n$$

In the 16ties Gregory of St Vincent, Roberval and others knew the equality of arc of the Archimede Spiral $\rho=a.\theta$ and the Parabola : $y^2=2.p.x$ The wheel and its corresponding ground. So the generalized parabola/hyperbola spirals are related to General Parabolas / hyperbolas as wheels and grounds by Gregory's transformation ($y=\rho$, $x=\int \rho.d\theta$).

Figure 1: Archimedean spiral rolling on a fixed Parabola

Figure 2: Hyperbolic spiral rolling on a fixedExponential

3 The set of cuves $C_{-2}(n,p)$ with $V=\pi/2-2u$

These curves have parametric equations:

$$\rho = (\cos u)^{2n} \cdot (\cos 2u)^{(p)} \quad \theta = n \tan u - 2(n+p) \cdot u$$

Figure 3: Galileo spiral $\rho=1-\theta^2$ rolling on Tschirnhausen's cubic $x=t-t^3/3$, $y=1-t^2$

When p = - n then $\theta = n \tan u$ and if we use this value in expression of ρ we get the following serie function of n :

$$\rho = \cos u^{2n} \cdot \cos 2u^{(-n)} = \left[\frac{1}{1 - \left(\frac{\sin u}{\cos u}\right)^2}\right]^n = \left[\frac{1}{1 - \tan^2 u}\right]^n = \left[\frac{1}{1 - \left(\frac{\theta}{n}\right)^2}\right]^n$$

and by Mc Laurin's transformation:

$$\rho = \left[\frac{1}{1 - \left(\frac{\theta}{n}\right)^2}\right]^n$$

Here we list some examples:

3.1 n=1: Catalan's curve.

$$\rho = \frac{1}{1 - \theta^2}$$

Figure 4: Curve n=1

3.2 n=2: Second curve.

$$\rho = \left[\frac{1}{1 - (\frac{\theta}{2})^2}\right]^2$$

Figure 5: Curve n=2

3.3 n = 3: Third curve.

$$\rho = \left[\frac{1}{1 - (\frac{\theta}{3})^2}\right]^3$$

Figure 6: Curve n=3

3.4 n = -1: Special Galileo spiral.

$$\rho = 1 - \theta^2$$

Figure 7: Curve n=-1

3.5 n=-2: Second curve.

$$\rho = \left[1 - (\frac{\theta}{2})^2\right]^2$$

Figure 8: Curve n=-2

3.6 n=-3: Third curve.

$$\rho = \left[1 - \left(\frac{\theta}{3}\right)^2\right]^3$$

Figure 9: Curve n = -3

4 The set of cuves $C_3(n,p)$ with V=3u.

These curves have parametric equations:

$$\rho = \left[\frac{\cos u}{3 - \tan^2 u}\right]^n \cdot (\sin 3u)^p \qquad \theta = n \cdot \tan(u) - (n + 3p) \cdot u$$

We study the cases n=-3p, then term in u is zero and $\theta=-3p$. $\tan u$:

$$\rho = \left[\frac{\cos u}{3 - \tan^2 u}\right]^{-3p} \cdot \sin^p 3u$$

$$\rho = \left[\frac{3 - \tan^2 u}{\cos^3 u}\right]^{3p} \cdot \sin^p 3u$$

$$\rho = \left[\frac{3 - \tan^2 u}{\cos^3 u}\right]^{3p} \cdot \sin^p 3u = \left[\left(\frac{3 - \tan^2 u}{\cos^3 u}\right)^3 \cdot \sin 3u\right]^p =$$

$$\rho = \left[(3 - \tan^2 u)^4 \cdot \tan u\right]^p$$

Since $\theta = n$ tan u then tan $u = \theta/n$ and we get the Mc Laurin formula :

$$\rho = \left[\left(3 - \left(\frac{\theta}{n} \right)^2 \right)^4 \cdot \left(\frac{\theta}{n} \right) \right]^{\frac{n}{3}}$$

And finally we get, since $\tan u = \frac{\theta}{3p}$ and for convenience we use p as the new exponent $n = \pm 3.p$:

$$\rho = \left[\left(3 - \left(\frac{\theta}{3 \cdot p} \right)^2 \right)^4 \cdot \left(\frac{\theta}{3 \cdot p} \right) \right]^p$$

5

Figure 10: Curve p = 1

4.1 p=1: First curve.

$$\rho = \left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)$$

4.2 p=2: Second curve.

Figure 11: Curve p = 2

$$\rho = \left[\left(3 - \left(\frac{\theta}{6} \right)^2 \right)^4 \cdot \left(\frac{\theta}{6} \right) \right]^2$$

4.3 p=3: Third curve.

Figure 12: Curve p=3

$$\rho = \left[\left(3 - \left(\frac{\theta}{9} \right)^2 \right)^4 \cdot \left(\frac{\theta}{9} \right) \right]^3$$

4.4 p = -1: First curve

$$\rho = \frac{1}{\left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)}$$

Figure 13: Curve p = 3

4.5 p = -2: Second curve.

$$\rho = \frac{1}{\left[\left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)\right]^2}$$

Figure 14: Curve p=-2

4.6 p = -3: Third curve.

$$\rho = \frac{1}{\left[\left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)\right]^3}$$

Figure 15: Curve p = -3

4.7 Curves with explicit $\rho = f(\theta)$ expressions.

The curves presented in the three classes above, associated with the $C_k(n, p)$ sets of curves, have a simple property for the angle V is equal to a multiple of the parameter u of polar angle $\theta = n$. tan u. But it is not easy to find geometric properties of these curves.

We give here two special cases of couples of associated wheel/ground.

4.7.1 Wheel is the Second curve of serie $V = \pi/2 - 2t$ for p = -2

Figure 16: Curve n = -2

$$\rho = \left[1 - \left(\frac{\theta}{2}\right)^2\right]^2$$

The parametric equations of the ground are:

$$x = 16.\theta - \frac{8}{3}.\theta^3 + \frac{1}{5}.\theta^5$$
 $y = (4 - \theta^2)^2$

Figure 17: Curve C2(n,-n) n=-2 as the wheel

Figure 18: Curve n = -2

4.7.2 Wheel is the first curve of serie V=3u for p=1

$$\rho = \left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)$$

Figure 19: Curve C3(- 3.p, p) p = 1 as the wheel

$$x = \frac{(\theta^2 - 27)^5}{196830}$$
 $y = \left(3 - \left(\frac{\theta}{3}\right)^2\right)^4 \left(\frac{\theta}{3}\right)$

References:

- (1) A H. Brocard, T. Lemoine Courbes geometriques remarquables Blanchard Paris (1967)
- (2) Gomez-Teixeira Traite des courbes speciales remarquables (1907)

This article is the 29^{th} Special cases of $C_k(n,p)$.

Part I : Gregory's transformation.

Part II: Gregory's transformation Euler/Serret curves with same arc length as the circle.

Part III: A generalization of sinusoidal spirals and Ribaucour curves

Part IV: Tschirnhausen's cubic.

Part V: Closed wheels and periodic grounds

Part VI: Catalan's curve.

Part VII: Anallagmatic spirals, Pursuit curves, Hyperbolic-Tangentoid spirals, β -curves.

Part VIII: Translations, rotations, orthogonal trajectories, differential equations, Gregory's transformation.

Part IX : Curves of Duporcq - Sturmian spirals.

Part X: Intrinsically defined plane curves, periodicity and Gregory's transformation.

Part XI: Inversion, Laguerre T.S.D.R., Euler polar tangential equation and d'Ocagne axial coordinates.

Part XII: Caustics by reflection, curves of direction, rational arc length.

Part XIII: Catacaustics, caustics, curves of direction and orthogonal tangent transformation.

Part XIV: Variable epicycles, orthogonal cycloidal trajectories, envelopes of variable circles.

Part XV: Rational expressions of arc length of plane curves by tangent of multiple arc and curves of direction.

Part XVI: Logarithmic spiral, aberrancy of plane curves and conics.

Part XVII: Cesaro's curves - A generalization of cycloidals.

Part XVIII: Deltoid - Cardioid, Astroid - Nephroid, orthocycloidals

Part XIX: Tangential generation, curves as envelopes of lines or circles, arcuides, causticoides.

Part XX: Tangential dual of Steiner Habicht theorem, Circular tractrices, newtonian catenaries, circles as roulettes of a curve on a line.

Part XXI: Curves of direction, minimal surfaces and CPG duality.

Part XXII: Equality of arc length of the parabola and the Archimede spiral. A historical tale of a question that raised at the beginning of the calculus (1643 - 1668) Hobbes, Roberval, Mersenne, Torricelli, Fermat, Pascal and J. Gregory.

Part XXIII: Rectangular hyperbola - Circle Geometric properties and formal analogies.

Part XXIV: Angular relations defining curves - Sectrices of Maclaurin - Plateau's curves.

Part XXV: Caustic by reflection and curves of direction - looking for examples.

Part XXVI: A selection of special plane curves $C_k(n,p)$ and a few properties - Cyclodes

Part XXVII : Some plane curves.

Part XXVIII: Some special roulettes and envelopes.

Part XXIX : Special cases of $C_k(n, p)$.

Part XXX: The Quintic of L'Hopital

Two papers in french:

- 1- Quand la roue ne tourne plus rond Bulletin de l'IREM de Lille (no 15 Fevrier 1983)
- 2- Une generalisation de la roue Bulletin de l'APMEP (no 364 juin 1988).

Gregory's transformation on the Web: http://christophe.masurel.free.fr