Special cases of $C_{k}(n, p)$ with explicit expressions of $\rho=f(\theta)$. - Part XXIX -

C. Masurel

07/03/2024

Abstract

From the classes of curves $C_{k}(n, p)$, generalizations of sinusoidal spirals, we extract some special series of curves with explicit polar equation $\rho=f(\theta)$. Curves in $C_{1}(n, p), C_{-2 *}(n, p)$, $C_{3}(n, p)$ have simple parametric equation with a natural parameter u linked to polar angle θ by a linear relation : $V=u, V=\pi / 2-2 u$ and $V=3 u$.

1 Curves with angle $\theta=n \tan (u)+p$.uand $V=$ linear function of \mathbf{u}

The curves $C_{k}(n, p)$ are generalizations of the set sinusoidal spirals : $\rho^{n}=\sin n \theta$ or $\cos n \theta$. We know that sinusoidal spirals are wheels for the Curves of Ribaucour w.r.t. to the natural base. They defined as the curves with special angle parametrization $\theta=n \tan (u)+p . u$ and a condition on the angle V between vector radius and current tangent.
Among these set of curves we find some special cases when the explicit polar equation $\rho=f(\theta)$ is possible.This happens when $\mathrm{p}=0$ in the parametric expression of the angle and the $\theta=n \cdot \tan u$.

2 The set of cuves $C_{1}(n, p)$ with $V=u$

These curves have parametric equations :

$$
\rho=\frac{\sin ^{(p+n)}(u)}{\cos ^{n}(u)} \quad \theta=n \tan (u)+p . u
$$

In this case if $\mathrm{p}=0$ then $\rho=\tan u^{n}$ so the polar equation is $\rho=\left(\frac{\theta}{n}\right)$. This is a parabola spiral general studied by Torricelli and Fermat. This case is in some sense trivial since Mc Laurin transformation is equivalent to a homothety.
These special class of parabolic spirals have parametric equations :

$$
\rho=\frac{\sin ^{n}(u)}{\cos ^{n}(u)}=\tan ^{n} u \quad \theta=n \tan (u)
$$

And so :

$$
\rho=\left(\frac{\theta}{n}\right)^{n}=\frac{1}{n^{n}} \cdot \theta^{n}=K . \theta^{n}
$$

In the 16 ties Gregory of St Vincent, Roberval and others knew the equality of arc of the Archimede Spiral $\rho=a . \theta$ and the Parabola : $y^{2}=2 . p . x$ The wheel and its corresponding ground. So the generalized parabola/hyperbola spirals are related to General Parabolas / hyperbolas as wheels and grounds by Gregory's transformation ($y=\rho, x=\int \rho . d \theta$).

Figure 1: Archimedean spiral rolling on a fixed Parabola

Figure 2: Hyperbolic spiral rolling on a fixedExponential

3 The set of cuves $C_{-2}(n, p)$ with $V=\pi / 2-2 u$

These curves have parametric equations :

$$
\rho=(\cos u)^{2 n} \cdot(\cos 2 u)^{(p)} \quad \theta=n \tan u-2(n+p) \cdot u
$$

Figure 3: Galileo spiral $\rho=1-\theta^{2}$ rolling on Tschirnhausen's cubic $x=t-t^{3} / 3, y=1-t^{2}$

When $\mathrm{p}=-\mathrm{n}$ then $\theta=n \tan u$ and if we use this value in expression of ρ we get the following serie function of n :

$$
\rho=\cos u^{2 n} \cdot \cos 2 u^{(-n)}=\left[\frac{1}{1-\left(\frac{\sin u}{\cos u}\right)^{2}}\right]^{n}=\left[\frac{1}{1-\tan ^{2} u}\right]^{n}=\left[\frac{1}{1-\left(\frac{\theta}{n}\right)^{2}}\right]^{n}
$$

and by Mc Laurin'stransformation :

$$
\rho=\left[\frac{1}{1-\left(\frac{\theta}{n}\right)^{2}}\right]^{n}
$$

Here we list some examples :
$3.1 n=1$: Catalan's curve.

$$
\rho=\frac{1}{1-\theta^{2}}
$$

Figure 4: Curve n=1
$3.2 n=2$: Second curve.

$$
\rho=\left[\frac{1}{1-\left(\frac{\theta}{2}\right)^{2}}\right]^{2}
$$

Figure 5: Curve $\mathrm{n}=2$
$3.3 n=3$: Third curve.

$$
\rho=\left[\frac{1}{1-\left(\frac{\theta}{3}\right)^{2}}\right]^{3}
$$

Figure 6: Curve $\mathrm{n}=3$
$3.4 n=-1$: Special Galileo spiral.

$$
\rho=1-\theta^{2}
$$

Figure 7: Curve $\mathrm{n}=-1$
$3.5 n=-2$: Second curve.

$$
\rho=\left[1-\left(\frac{\theta}{2}\right)^{2}\right]^{2}
$$

Figure 8: Curve $\mathrm{n}=-2$
$3.6 n=-3$: Third curve.

$$
\rho=\left[1-\left(\frac{\theta}{3}\right)^{2}\right]^{3}
$$

Figure 9: Curve $\mathrm{n}=-3$

4 The set of cuves $C_{3}(n, p)$ with $V=3 u$.

These curves have parametric equations :

$$
\rho=\left[\frac{\cos u}{3-\tan ^{2} u}\right]^{n} \cdot(\sin 3 u)^{p} \quad \theta=n \cdot \tan (u)-(n+3 p) \cdot u
$$

We study the cases $n=-3 p$, then term in u is zero and $\theta=-3 p \cdot \tan u$:

$$
\begin{gathered}
\rho=\left[\frac{\cos u}{3-\tan ^{2} u}\right]^{-3 p} \cdot \sin ^{p} 3 u \\
\rho=\left[\frac{3-\tan ^{2} u}{\cos ^{3} u}\right]^{3 p} \cdot \sin ^{p} 3 u \\
\rho=\left[\frac{3-\tan ^{2} u}{\cos ^{3} u}\right]^{3 p} \cdot \sin ^{p} 3 u=\left[\left(\frac{3-\tan ^{2} u}{\cos ^{3} u}\right)^{3} \cdot \sin 3 u\right]^{p}= \\
\rho=\left[\left(3-\tan ^{2} u\right)^{4} \cdot \tan u\right]^{p}
\end{gathered}
$$

Since $\theta=n \cdot \tan u$ then $\tan u=\theta / n$ and we get the Mc Laurin formula :

$$
\rho=\left[\left(3-\left(\frac{\theta}{n}\right)^{2}\right)^{4} \cdot\left(\frac{\theta}{n}\right)\right]^{\frac{n}{3}}
$$

And finally we get, since $\tan u=\frac{\theta}{3 p}$ and for convenience we use p as the new exponent $n= \pm 3 . p$:

$$
\rho=\left[\left(3-\left(\frac{\theta}{3 \cdot p}\right)^{2}\right)^{4} \cdot\left(\frac{\theta}{3 \cdot p}\right)\right]^{p}
$$

Figure 10: Curve $\mathrm{p}=1$
$4.1 \quad p=1$: First curve.

$$
\rho=\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)
$$

$4.2 \quad p=2$: Second curve.

Figure 11: Curve p $=2$

$$
\rho=\left[\left(3-\left(\frac{\theta}{6}\right)^{2}\right)^{4} \cdot\left(\frac{\theta}{6}\right)\right]^{2}
$$

$4.3 \quad p=3$: Third curve.

Figure 12: Curve $\mathrm{p}=3$

$$
\rho=\left[\left(3-\left(\frac{\theta}{9}\right)^{2}\right)^{4} \cdot\left(\frac{\theta}{9}\right)\right]^{3}
$$

$4.4 \quad p=-1$: First curve

$$
\rho=\frac{1}{\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)}
$$

Figure 13: Curve $\mathrm{p}=3$
$4.5 \quad p=-2$: Second curve.

$$
\rho=\frac{1}{\left[\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)\right]^{2}}
$$

Figure 14: Curve $\mathrm{p}=-2$
$4.6 \quad p=-3$: Third curve.

$$
\rho=\frac{1}{\left[\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)\right]^{3}}
$$

Figure 15: Curve $\mathrm{p}=-3$
4.7 Curves with explicit $\rho=f(\theta)$ expressions.

The curves presented in the three classes above, associated with the $C_{k}(n, p)$ sets of curves, have a simple property for the angle V is equal to a multiple of the parameter u of polar angle $\theta=n \cdot \tan u$. But it is not easy to find geometric properties of these curves.
We give here two special cases of couples of associated wheel/ground.
4.7.1 Wheel is the Second curve of serie $V=\pi / 2-2 t$ for $\mathbf{p}=\mathbf{- 2}$

Figure 16: Curve $\mathrm{n}=-2$

$$
\rho=\left[1-\left(\frac{\theta}{2}\right)^{2}\right]^{2}
$$

The parametric equations of the ground are :

$$
x=16 . \theta-\frac{8}{3} . \theta^{3}+\frac{1}{5} . \theta^{5} \quad y=\left(4-\theta^{2}\right)^{2}
$$

Figure 17: Curve $\mathrm{C} 2(\mathrm{n},-\mathrm{n}) \mathrm{n}=-2$ as the wheel

Figure 18: Curve $\mathrm{n}=-2$
4.7.2 Wheel is the first curve of serie $\mathrm{V}=3 \mathrm{u}$ for $\mathrm{p}=1$

$$
\rho=\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)
$$

Figure 19: Curve C3(- 3.p, p) p=1 as the wheel
The parametric equations of the ground(red curve above) are :

$$
x=\frac{\left(\theta^{2}-27\right)^{5}}{196830} \quad y=\left(3-\left(\frac{\theta}{3}\right)^{2}\right)^{4}\left(\frac{\theta}{3}\right)
$$

References :

(1) A - H. Brocard , T. Lemoine - Courbes geometriques remarquables Blanchard Paris (1967)
(2) Gomez-Teixeira - Traite des courbes speciales remarquables (1907)

This article is the $29^{\text {th }}$ Special cases of $C_{k}(n, p)$.
Part I : Gregory's transformation.
Part II : Gregory's transformation Euler/Serret curves with same arc length as the circle.
Part III : A generalization of sinusoidal spirals and Ribaucour curves
Part IV: Tschirnhausen's cubic.
Part V : Closed wheels and periodic grounds
Part VI : Catalan's curve.
Part VII : Anallagmatic spirals, Pursuit curves, Hyperbolic-Tangentoid spirals, β-curves.
Part VIII : Translations, rotations, orthogonal trajectories, differential equations, Gregory's transformation.
Part IX: Curves of Duporcq - Sturmian spirals.
Part X : Intrinsically defined plane curves, periodicity and Gregory's transformation.
Part XI : Inversion, Laguerre T.S.D.R., Euler polar tangential equation and d'Ocagne axial coordinates.
Part XII : Caustics by reflection, curves of direction, rational arc length.
Part XIII : Catacaustics, caustics, curves of direction and orthogonal tangent transformation.
Part XIV : Variable epicycles, orthogonal cycloidal trajectories, envelopes of variable circles.
Part XV : Rational expressions of arc length of plane curves by tangent of multiple arc and curves of direction.
Part XVI : Logarithmic spiral, aberrancy of plane curves and conics.
Part XVII : Cesaro's curves - A generalization of cycloidals.
Part XVIII : Deltoid - Cardioid, Astroid - Nephroid, orthocycloidals
Part XIX : Tangential generation, curves as envelopes of lines or circles, arcuides, causticoides.
Part XX : Tangential dual of Steiner Habicht theorem, Circular tractrices, newtonian catenaries, circles as roulettes of a curve on a line.
Part XXI : Curves of direction, minimal surfaces and CPG duality.
Part XXII : Equality of arc length of the parabola and the Archimede spiral.A historical tale of a question that raised at the beginning of the calculus (1643-1668) Hobbes, Roberval, Mersenne, Torricelli, Fermat, Pascal and J. Gregory.
Part XXIII : Rectangular hyperbola - Circle Geometric properties and formal analogies.
Part XXIV : Angular relations defining curves - Sectrices of Maclaurin - Plateau's curves.
Part XXV : Caustic by reflection and curves of direction - looking for examples.
Part XXVI : A selection of special plane curves $C_{k}(n, p)$ and a few properties - Cyclodes
Part XXVII : Some plane curves.
Part XXVIII : Some special roulettes and envelopes.
Part XXIX : Special cases of $C_{k}(n, p)$.
Part XXX : The Quintic of L'Hopital
Two papers in french :
1- Quand la roue ne tourne plus rond - Bulletin de l'IREM de Lille (no 15 Fevrier 1983)
2- Une generalisation de la roue - Bulletin de l'APMEP (no 364 juin 1988).
Gregory's transformation on the Web : http://christophe.masurel.free.fr

