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Abstract

From the classes of curves Ck(n, p), generalizations of sinusoidal spirals, we extract some
special series of curves with explicit polar equation ρ = f(θ) . Curves in C1(n, p), C−2∗(n, p),
C3(n, p) have simple parametric equation with a natural parameter u linked to polar angle
θ by a linear relation : V = u, V = π/2 − 2u and V = 3u.

1 Curves with angle θ = n tan(u) + p.uand V =linear function of u

The curves Ck(n, p) are generalizations of the set sinusoidal spirals : ρn = sinnθ or cosnθ. We
know that sinusoidal spirals are wheels for the Curves of Ribaucour w.r.t. to the natural base.
They defined as the curves with special angle parametrization θ = n tan(u)+p.u and a condition
on the angle V between vector radius and current tangent.
Among these set of curves we find some special cases when the explicit polar equation ρ = f(θ) is
possible.This happens when p=0 in the parametric expression of the angle and the θ = n. tanu.

2 The set of cuves C1(n, p) with V = u

These curves have parametric equations :

ρ = sin(p+n)(u)
cosn(u) θ = n tan(u) + p.u

In this case if p = 0 then ρ = tanun so the polar equation is ρ = ( θn). This is a parabola spiral
general studied by Torricelli and Fermat. This case is in some sense trivial since Mc Laurin
transformation is equivalent to a homothety.
These special class of parabolic spirals have parametric equations :

ρ =
sinn(u)

cosn(u)
= tann u θ = n tan(u)

And so :

ρ =
(θ
n

)n
=

1

nn
.θn = K.θn

In the 16ties Gregory of St Vincent, Roberval and others knew the equality of arc of the
Archimede Spiral ρ = a.θ and the Parabola : y2 = 2.p.x The wheel and its corresponding
ground. So the generalized parabola/hyperbola spirals are related to General Parabolas
/ hyperbolas as wheels and grounds by Gregory’s transformation (y = ρ , x =

∫
ρ.dθ).
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Figure 1: Archimedean spiral rolling on a fixed Parabola

Figure 2: Hyperbolic spiral rolling on a fixedExponential

3 The set of cuves C−2(n, p) with V = π/2 − 2u

These curves have parametric equations :

ρ = (cosu)2n.(cos 2u)(p) θ = n tanu− 2(n+ p).u

Figure 3: Galileo spiral ρ = 1 − θ2 rolling on Tschirnhausen’s cubic x = t− t3/3 , y = 1 − t2
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When p = - n then θ = n tanu and if we use this value in expression of ρ we get the

following serie function of n :

ρ = cosu2n. cos 2u(−n) =
[ 1

1 −
(

sinu
cosu

)2

]n
=
[ 1

1 − tan2 u

]n
=
[ 1

1 − ( θn)2

]n
and by Mc Laurin’stransformation :

ρ =
[ 1

1 − ( θ
n
)2

]n
Here we list some examples :

3.1 n = 1 : Catalan’s curve.

ρ =
1

1 − θ2

Figure 4: Curve n=1

3.2 n = 2 : Second curve.

ρ =
[

1
1−( θ2 )2

]2

Figure 5: Curve n=2
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3.3 n = 3 : Third curve.

ρ =
[

1
1−( θ3 )2

]3

Figure 6: Curve n=3

3.4 n = −1 : Special Galileo spiral.

ρ = 1 − θ2

Figure 7: Curve n= -1

3.5 n = −2 : Second curve.

ρ =
[
1 − (θ2)2

]2

Figure 8: Curve n= -2
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3.6 n = −3 : Third curve.

ρ =
[
1 − (θ3)2

]3

Figure 9: Curve n= -3

4 The set of cuves C3(n, p) with V = 3u.

These curves have parametric equations :

ρ =
[

cosu
3−tan2 u

]n
.(sin 3u)p θ = n. tan(u) − (n+ 3p).u

We study the cases n = −3p, then term in u is zero and θ = −3p. tanu :

ρ =
[ cosu

3 − tan2 u

]−3p

. sinp 3u

ρ =
[3 − tan2 u

cos3 u

]3p
. sinp 3u

ρ =
[3 − tan2 u

cos3 u

]3p
. sinp 3u =

[(3 − tan2 u

cos3 u

)3
. sin 3u

]p
=

ρ =
[
(3 − tan2 u)4. tanu

]p
Since θ = n. tanu then tanu = θ/n and we get the Mc Laurin formula :

ρ =
[(

3 − (
θ

n
)2
)4

.
(θ
n

)]n
3

And finally we get, since tanu = θ
3p and for convenience we use p as the

new exponent n = ±3.p :

ρ =
[(

3− ( θ
3.p)

2
)4

.
(

θ
3.p

)]p
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Figure 10: Curve p = 1

4.1 p = 1 : First curve.

ρ =
(
3−

(
θ
3

)2)4(
θ
3

)
4.2 p = 2 : Second curve.

Figure 11: Curve p = 2

ρ =
[(

3−
(
θ
6

)2)4

.
(
θ
6

)]2

4.3 p = 3 : Third curve.

Figure 12: Curve p=3

ρ =
[(

3 −
(
θ
9

)2)4

.
(
θ
9

)]3
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4.4 p = −1 : First curve

ρ = 1(
3−
(
θ
3

)2)4(
θ
3

)

Figure 13: Curve p = 3

4.5 p = −2 : Second curve.

ρ = 1[(
3−
(
θ
3

)2)4(
θ
3

)]2

Figure 14: Curve p= -2

4.6 p = −3 : Third curve.

ρ = 1[(
3−
(
θ
3

)2)4(
θ
3

)]3
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Figure 15: Curve p= -3

4.7 Curves with explicit ρ = f(θ) expressions.

The curves presented in the three classes above, associated with the Ck(n, p)sets
of curves, have a simple property for the angle V is equal to a multiple of
the parameter u of polar angle θ = n. tanu. But it is not easy to find
geometric properties of these curves.
We give here two special cases of couples of associated wheel/ground.

4.7.1 Wheel is the Second curve of serie V = π/2 − 2t for p = -2

Figure 16: Curve n= -2

ρ =
[
1 −

(θ
2

)2]2

The parametric equations of the ground are :

x = 16.θ − 8

3
.θ3 +

1

5
.θ5 y = (4 − θ2)2
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Figure 17: Curve C2(n,-n) n= -2 as the wheel

Figure 18: Curve n= -2

4.7.2 Wheel is the first curve of serie V=3u for p=1

ρ =
(

3 −
(
θ
3

)2)4(
θ
3

)

Figure 19: Curve C3(- 3.p, p) p = 1 as the wheel

The parametric equations of the ground(red curve above) are :

x =
(θ2 − 27)5

196830
y =

(
3 −

(θ
3

)2)4(θ
3

)
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