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Abstract

We present some properties of the Quintic of l’Hopital found by the marquis de l’Hopital
in 1700 as a special solution of a mechanical problem posed by Johann Bernouilli in 1696.
This curve has similarities with the Tschirnhausen’s Cubic.

1 The Quintic of L’Hopital :

In 1695 Johann Bernoulli in a letter to Leibniz and in 1696 in Acta Eruditorum presented a
question :
”To find a plane curve with constant reaction such that if a particle descends along it by the pull
of gravity (the gravitational field is supposed to be uniform), then the reaction of the curve on
the particle has a constant intensity; conversely, the force applied by the particle on the curve
has a constant intensity.”
The Marquis of l’Hopital presented a general solution for the problem and, as a special solution,
his Quintic in 1700. It is a curve of direction and has some resemblance with Tschirnhausen’s
cubic. The parametric equations of Quintic of l’Hopital in the (x, y)-plane are :

x = 2(t− t5

5
) y = (1 + t2)2

Figure 1: Quintic of L’Hopital
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2 A physical problem : the curve of constant pressure.

We give the solution of L. Lecornu (1904 BSMF) for the above problem of Johann Bernoulli.
The moving point has a mass equal to unity. g is the gravity, θ the angle between tangent
and x-axis, v the velocity, Rc the radius of curvature, and s the curvilinear abcissa. We note
Rc = λ.g the force of the curve on the mobile.
The centrifugal force is :

Figure 2: Bernoulli’s physical problem

v2

Rc
= g.(λ+ cos θ) (1)

The theorem of cinetic energy is :

v.dv = g. sin θ.ds (2)

We have Rc = ds/dθ, elimination of Rc and ds gives :

dv

v
=

sin θdθ

λ+ cos θ
(3)

By integration we get :

v =
k

λ+ cos θ
(4)

We put this value in (1) so :

Rc =
k2

g(λ+ cos θ)
=
v2

kg
(5)

The radius of curvature is therefore proportional to the cube of the speed. Let y be the distance
from the mobile to the horizontal over which its speed would cancel out. We have :

y =
v2

2g
=

k2

2g(λ+ cos θ)
(6)

Comparing (5) and (6) gives :

Rc =
2
√

2g

k
y3/2.

Equation (4) shows that the hodograph of the movement is a conical section with excentricity
e.

v =
a(1− e2)
1 + e cos θ

e = 1/λ a =
ke

1− e2
=

kλ

(λ2 − 1)
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There are three kinds of curves depending on the shape of the hodograph e = 1/λ :

1) Hodograph is an ellipse (λ > 1) the parametric equations are :

y =
v2

2g
=
a2

2g
(1− e cosu)2

x =
a2e

g.
√

1− e2
(−3

2
eu+ (1 + e2) sinu− e

4
sin 2u)

s =
a2e

g.
√

1− e2
[
(1 +

e2

2
)u− 2e sinu+

e2

4
sin 2u)

]
1) Hodograph is an hyperbola (λ < 1) so :

y =
a2

2g
(1 +

e2

2
− 2.e cosh t+

e2

2
cosh 2t)

x =
a2e

g.
√
e2 − 1

(−3

2
e.t+ (1 + e2) sinh t− e

4
sinh 2t)

t− e. sinh t =

√
e2 − 1

ae
g.t

3) The case e=1 a parabolic hodograph corresponds to the case of the Quintic of L’Hopital :

x =
k2

4g
(t− t5

5
)

y =
k2

8g
(1 + t2)2

t+
t3

3
= 2g.t

Among the infinite number of solutions of this physical problem there is an algebraic solution
called the Quintic of L’Hopital Other formulation of the question :
The evolutes of such curves are the solution of the following problem (also posed by Jean
Bernoulli) : determining a curve on which to wind the wire of a pendulum so that the tension
of the wire of this pendulum remains constant.

2.1 Focus of L’Hopital Quintic

The foci of an algebraic plane curve are points of intersection of two tangents from cyclic points
I or J. In parametric coordinates : x = f(t), y = g(t), the circular lines through the foci are the
tangents at the points given by f ′(t) = ±i.g′(t). For L’Hopital Quintic : 2(1−t4) = ±i.4.t(1+t2)
and we get (t±i)2 = 0 and the value of for point of tangency of the two isotropic lines are t = ±.i.
So :

x+ iy = 2i(1− i4/5) + i(1 + i2)2 = a+ ib = 0 + i.8/5

So the coordinates of the focus F are (0, 8/5).
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2.2 Double points of L’Hopital Quintic

These double points are on the y-axis of symmetry for x=0. So for t double root cancelling the
x-coordinate :

x = 2(t− t5

5
) = 0

We find t = ±
√

5 and t = ±i
√

5.

The first value gives the evident point D(0, 6 + 2
√

5).

The second value gives an isolated double point I(0, 6− 2
√

5). Near and under the focus F.

3 Equation w.r.t. the focus and the directrix

Figure 3: Equation (MF/MH) or (ρ, y).

The L’Hopital Quintic (ρ, y) can be expressed in the form f(MF, MH)=0 see (4) : distance

ρ to the focus and y to the directrix, the same used since antiquity for conics. The directrix is

the axis x’x and is the chord of contact of the two circular lines through focus F (so the directrix

corresponding to F).

y = (1 + t2)2 = MH

ρ2 = (x2 + (y − 8/5)2 = MF 2

It can be verified that the equation focus-directrix (ρ, y) is :

25ρ2 = y2(4
√
y + 5)

4 Cartesian and polar equations of the Quintic of L’Hopital

We need the equation of the L’Hopital Quintic with vertical axis in an orthonormal frame
in the following form :

x = 2(t− t5

5
) y = (1 + t2)2
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and :

tanV =
dx

dy
=

1− t2

2t
= tan(π/2− 2u)

The parameter t = tanu implies V = π/2− 2u. The polar equation with the pole at
the focus of the Quintic of L’Hopital is :

25.r2 = y2.(4
√
y + 5) = (1 + t2)2.(4(1 + t2) + 5)

tan θ =
∆x

∆y
=

2(t− t5/5)

(1 + t2)2 − 8/5

The curve has a symmetry w.r.t. Oy-axis. Three horizontal lines in the plane of L’HQ
play a special role in the geometry of the curve :
- Directrix/natural base-line (y=0),
- Tangent to the summit S (0,1) for u=0 is (y=+1) and
- Double normal (y=+4).

5 A subclass of curves linked with wheels C2∗(n, p) and to ”curves
of direction” as a generalization of Tschirnhausen’s cubic or
Nephroid :

We study grounds corresponding to wheels for which p = 0 with parametric equations :

ρ = (cos t)2n and θ = n(tan t− 2t)

We use these wheels in polar to find ground curves using direct Gregory’s transformation
(y = ρ and x=

∫
ρ.dθ) by one integration we get the parametric equation of the ground in

the plane (x, y) for n positive integer :

y = ρ = cos2n t and x =

∫
ρ.dθ = n

∫
cos2n t.(tan2 t− 1).dt

We identify these equations with the one of general caustics generated by the arbitrary
functions f(t) and g(t) which are COD when algebraic. We find :

f(t) = 2n cos2n−1 t sin t and g(t) = tan t

6 Ground corresponding to wheels C2∗(n, 0) when n > 0

The grounds corresponding to the class of wheels C2∗(n, p) are caustics by reflection in
the same way as for the Nephroid. The subclass of grounds corresponding to curves C2∗(n,
0) - with 2.n∈ Z - are caustics of plane curves.
we shall consider the curves for small n positive and negative. Since the ordinate y =
cos2n t we explore half integers (so : 2.n=an integer) and examine two classes y < 1 so n
is positive and y > 1 for negative n. The first cases are :

n=1/2 : Poleni’s curve,
n= 1 : Circle,
n=3/2 : Nephroid,
n=-1 : Tschirnhausen’s Cubic,
n=-2 : Quintic of l’Hopital .
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Figure 4: Ground for C2∗(n, 0) Angle V = π/2− 2u from n=1/2 to 4 by step 1/2
.

The following curves: C∗2(n, 0): ρ = cos2n t, θ = n(tan t − 2t) presents interesting
properties : they are wheels for caustics by reflection. The serie of curves that we discuss
here is a subserie of above grounds for the wheels C2∗(n, p) when p=0 and n=1/2 to 4
step 1/2 :

Figure 5: Ground for C−2(n, 0) Angle V = π/2− 2 from n=-1 to - 4 by step -1/2

We giveabove the the graphs of curves when p=0 and n=-1/2 to -4 step -1/2 are
algebraic with a rational arc length and are curves of direction stricto sensu. For n half
integer the curves are not algebraic so not curves of direction stricto sensu.

7 Properties derived from the system ground/wheel

In this section we use Gregory’s transformation and three base-lines y = 0 (the direc-
trix), y=+1 tangent to S and y = +4 (the double normal) and the reverse Gregory’s
transformation (GT−1).

7.1 Wheel for directrix : y=0

We search for the wheel in parametric polar coordinates and for the first one (y=0) we
find :

ρ = y = (1 + t2)2 =
1

cos4 u
and θ = 2 tan(u)− 4u

6



It is a C2∗(n, p) for n=2, p=0.
The antipedal of this wheel is

ρ =
1

cos4 u cos 2u
and θ = 2 tan(u)− 6u

It is a C2∗(n, p) for n=2, p=-1.
The antipedal of this wheel when rolling on x’Ox generates the Quintic of L’Hopital .

7.2 Wheel for line : y=+4

For the other base-line (y=+4) - the double normal - and the same L’HQ the wheel is :

ρ = (t2 + 3)(t2 − 1) and θ =
4√
3

arctan
t√
3
− 2t

These two wheels can roll one on the other around two poles at the distance of 3 with

Figure 6: Wheel for the Quintic of L’Hopital for Directrix y=0 and double normal y = +4

usual conditions.

7.3 Wheel for tangent to S : y=+1

Using Gregory’s transformation: ρ = (1 + t2)2 − 1 and θ =
∫

dx
y

=
∫ 2(1−t4)dt

2t2+t4
.

ρ = (1 + t2)2 − 1 and θ = −1/t− 2t+
3√
2

arctan
t√
2

When the Quintic of L’Hopital rolls along the xx’ axis the pole/focus describes the
curve:

x = 2(t− t5

5
) y = (1 + t2)2 − 4

8 L’Hopital Quintic as the caustic of a plane curve

Tschirnhausen’s cubic is the caustic by reflection on the parabola or on the semicubic
parabola. By analogy there are two plane mirror-curves for the Quintic of L’Hopital. We
recall her some results of my paper No 25.
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Figure 7: Wheel of L’Hopital Quintic-ground for tangent at S.

Figure 8: Wheel rolling on the Quintic of L’Hopital base line is the tangent at S : y=+1

Figure 9: Wheel rolling on L’Hopital Quintic base line is double Normal y=+4
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8.1 Curve of direction for n= -2 : Quintic of L’Hopital or Looping curve.

This second curve is L’Hopital curve (see fig.10) :

Curve Mirror 1 Mirror 2

XM = 1 + 2t2

3
+ t4

5
XM ′ = 1− t2

3
(6 + t2)

YM = − 4
15
t(5 + t2) YM ′ = 4

15
t3(5 + t2)

n = 2 Anti-bisectant-Involute Caustic = curve of direction

XD = (15−15t2+5t4+3t6)
(15+15t2)

XC = (1 + t2)2

YD = 8
15
t3 (5+t2)

(1+t2)
XC = 2

5
t((t4 − 5))

Figure 10: Quadruplet n=-2 : Two Mirrors-Bissectant and Quintic of L’Hopital
.

9 The evolute of the Quintic of L’Hopital

The evolute (fig.11) of the Quintic of L’Hopital has algebraic parametric equations in x
an y and is a also a curve of direction (Laguerre) with a rational arc length :

x = 4t3(1− 3

5
t2) y = (1 + t2)2(2− t2)

The arc length is ds = 6t(1 + t2)2.dt so s = [3t2 + 3t4 + t6]t1to.
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Figure 11: Evolute of the Quintic of L’Hopital
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There is an english adaptation.
Gregory’s transformation on the Web : http://christophe.masurel.free.fr

11


