A GENERALTIZATION of ‘the WHEEL
or the ADAPTABLE WHEEIL

The wheel, whose inventor is unknown, $&éems. t0 be one of those
great ideas that never céase t0 meet new appllcations. It is fascin-
ating to note that the prineciple of the wheel has not changed for about
four thousand years. During that time, engineers have constructed
roads, bridges and tunnels, and modified the earth so that the wheel

could reach previouily unaccessible points.

Its great success comes essentially from its facility of construc-
tion in addition to its &implicity. Heretofore built on the model of
the disc with the hub fixed at the center and the circle making the
contact with the ground (fig. 1), the wheel is scarcely flat on the
earth, hence we have had to build thoroughfares and adapted the ground

1o the wheel.

The followihg érticle will show how it is possible to make the
inverse adaptakion; that is the one of the wheel to the ground.
‘Al%hough this idea may at first appear fanciful, it has some striking
applications. Animals move on the ground with the help of articulated
limbs, while the wheel had facilitated man's terrestrial mobility.

The adaptable wheel, that fits perfectly to the ground that it crosses,
would represent the midssing link between thése‘two distinct technical

systems, Just as the Trolley is a middle course between the train




and the bus, so it would be useful to assimilate the adaptabileé

wheel o a kind of articulated limb systam.

The history of mathematics gives @xamples of the theofy which
is of interest in resolving the above propesition. Copernic and
Cardan (16th century) have given this theorem (sometimes palled
Lahire's gear in France):

- If a disc of rgdiﬁs R rolls, without slippihg, along the inner
edge of a disc of doubie its radius (2R) then a point 0 fixed on
the circumferente of the smaller disc will describe a diameter of

the larger disc (fig. 2). e .

2R

A 1little later, in the 17th céntury, Cavalieri, Torricelli,
Grégoire de St. Vincent and many others noticed, through the reading
of Archimedefs work, a curious similarity between Archimede's spiral
(eq;ati0n=P-a-e in polar coordinates) and the parabola (equation:
y2:2ax in rectangiilar coordinates). The arc lengths of the two

curves are wqual between the points y-e-o and the current point M,

y=Q
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between the x-axis, the parabola and a line parallel to the y-axis

at the end of the arc is twice that of the correspdénding spiral sector.
We can show that it is possible t& roll the spiral on the inner edge

of the parabola so that the pole 0 of the spiral describes the

x~axis, the parabola‘'s axis of symetry. The summits are in coincidendce

at the beginning of the movement (fig. J
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These two simple examples allow us to express the problem in
general terms. Let us take a ground simulated by any plane curve
(x(u), y(u) in rectangular coordinates - u is a parameter) we shall
now search for the equation in polar coordinates (p,Q) -of the adapted
wheel go that it may roll, without sliding, on the ground in such a
way that the hub describes a horizantal line {(which will be supposed
to ‘be the x-axis). ’
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The Oenter of Elementary Rotdtitn (C.E.R,) of the wheel is the point
of contact with the ground which is on the vertical line of the
point (i.e. normal to the x-axis). So we can write: p=y (1)
By an elementary rottation abdut the O.E.R. we obtain: dx3 0 de (2)
These equations give the profile of the ground or of the wheel if

one of them is known:

A) If we know the wheel: {j: £ (8).

f7= ¥

then: e 10 We thus ¢btain the parametric
X—XO = jeo ()

equation of the ground (& is eguivalent to u) in rectangular

coordinates.
"B} If we know the ground: x(u), y(u)

then: {?; \fu dx Hence yielding the parametric
-8 = —_—— i
0 Yy, ¥

i

edﬁatioﬁ of the wheel in polar coordinates. (Of course, there

is a condition: y¥0 on the interval [uo,uIJ)

Note: As in any problem concerning differential equations, initial:
conditions must be verified: P=f. and 6=6_ . These conditions define
the porition of the wheel at ‘the beginning of the mOVemant. In all

the. examples of this article the conditions are assumed to be verified.

This problem has been investigated byymany mathematicians during
the 17th éentury but the one who went fhe Tfurthest intthe research by
geometric means was J. Gregory (1638-1675). ﬁe shallseall the
transformation (wheé&l-~ground) Gregory's Transformation, G.T., (G.'I‘.“1
being the inverse which gives ‘the wheel's form, knowiﬁg' the shape

of the ground).



The Gregory Transformation defined as:

p=y (1) and P-Q6= dx (2)
allows the devivation of mapy fundamental properities for ithe correspond-
ing curves:

- Equality of arc lengths: dsy .1 = 48,619

or ~ dp? 4+ p?ae® . ay” 4 ax*

The elementary triangle of Leibnitz (dx, dy, ds) is conserved in the
G.T.. So, if we establish a table of correspondence bhetween the
constituents of Leibnitz's elementary triangle in polar coordinates

and rectangular coordinates, maintaining éimilar definitions throughout
the transformations, the covrespondences are exact. Precisely, the

equality holds only for the points linked by contact during the

_moveﬁent¢
-~ground -~ -wheel~
Rectangular (v,x) . Polar (p,9)
point M point M'
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Note: Some authors call Gregory's diredt transformation evoluta (G.T.)

and involuta (ﬁ.T.'l).

- Areas: It is possible to prove that the area enclosed within the
two extremej-ordinates and the ground-curve is twice the area between

the two corresponding vector radii and the wheel-curve. For:

A - Su:l y dx =J(;oe(3.()d6 = 2[%5%08 ?ﬁ _de] = 295 ' A

3-

The Steiner-Habicht Theorem

The roulettes and the wheels defined with Gregory's Transformation
are associated by the following theorem (Steiner 1846 - Habicht 1882)
Reminder: The pedal of a curve with respect to the pole is the locus

~of the pole's orthogonal projection onto the current tangential line.

Theorem- : If (c) i1s the pole's roulette of a curve (Ci), defined
in polar coordinates, on a line (D) then the pedal curve of (Cl)
with resﬁect t4Q the pole is a wheel %onrespond&ﬁg to the ground (C),
the hub of which moves on the 1line (D).
An example Will help in the assimilation of the result that is not
very difficult to prove: |

The roulette of a point on a cirélerrolling on a line (D) describes

a cycloid} a classical resuit. The circle's pedal with respect to

one of its points is a cardidid.
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~circle : P = 2+a+ cos8 © -the roulette of (C ) is a
.. Py X = a- (t -gin t)
its pedal, the cardidid: cycloid:
? - 2-a. cos? (%) y = a (l-cos t)
we have: t = 8

According to S & H's theorem, the cardioid rolls on the inner:
edge of the cycldidijand O deséribes the line D).

If we employ the theorem in the opposite way,hwe can determine
the anti-roulette with the negative pedal (the anti-roulette is that

curve which arises when we kno¥ the roulette and the line).

Rolling curves and adaptable wheels

Two curves that can roll one on the other, without slipping, and-
around two fixed poles O and 0, (at #he distance a)-in the plane,

are called a couple of rolling curveés.

. ol &) :Y (C,LJ_____.——— IO
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Iff one of the two curves id given in polar coordinates: P- ()
then the other one can be simply determined;:

We call I the center of elementary rotatiﬁn (C.E.R.), it is
located in the line OOl.
- On one hand P +€i- = a (3)



[%

- On the other hand, the two curves have a tangent contact at the

C.E.R.: I, that gives another condition:

0 9, -
e %7 t Py ggi m O (4)

This last equation can be reduced to the simpler form:
o a0 = e, e, (5) because
dP - -<iP s (By differentiating (3) )

We have the equality of lengthifor corresponding arcs of (c)

and (Cl).
Finally : Pl = a-e
and 48, = 0:d0 = p:do R T £.d8 (p ¢ a)

't 8g
Only one integration is necessary to determine the curve (Cl)

when we know (0).

The theory of rolling curves was first investigated by L. Euler
(1707-1783) and can be connected to the adaptable wheels in ‘the
following way:

Two wheels adapted to a common ground are curves which roll one
on the other. The locus of the pole-hub (0'01) are two parallel
1ines‘(D,Di) at the distance a2 which is the distance between the fixed
poles of the rolling curves. We get, as it were, a rolling mill in

which the rollers are ot circular and the ground takes the place

of the metal sheet: /////\\\\ o
1 O. . (Di)
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If,:for example, we fix one of the wheels (0) and roll the ground
and “the dther wheel.(ol) on the first one, then‘oi describes a circle
with center O and radius a. This circle is also the envelope of
(Dl) linked to (01) and_(D) passes constantly through 0.

We supposé ‘that ‘the parametric ground-equations are x = x (u)

and y =y (u) then: ( (D) ié the x-axis ).

C =Y yao I

_ydx ax ﬁde
8 —y? ) 61 =ya_y. = a“F

Wheel (0). ' Wheel (01)

These resilts also give the golution of the following problem:
Find the curve %02) so that the roulette of a point (01) in the plane

of (C ) is .a circle. 7
Let us examine some simple examples in detail:

;A;‘ (1) the ground is the Tchirnhausen*s

Cubic: y = a(l - u?)
{jx u.a(u - gz )

tHen the wheel corrésponding

to (Dl) ag x-axis 1is:

-ezy,a(l-uz)' .

and [ © JEU %§-=J;ugh: %:E du = u .

P 2 a(l - 8%) —> Whael (Cl)HT

hd

and finally O

i will move on (Di).'
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(2)
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the ground is the same Tchirnhausen's cubic but the Line
(D2) is parallel;to (Dl) at the distance 2.a under (Di).
With this prémise, the ground equations are:

2))

w)

yew a(l 4+ u
x = alu - u

and then the corresponding wheel-equations are:

P vy g a(l - uz)

o - ou dx =J“ g% = 2+ Arctan(u) - u

if u =tano£ then P

cos a<‘
::;> wheel (02)
6 = 2:e - tand
This last curve and = a(l - 62) S (Ci) form a couple

of rolling curves at the distance 2a between poles. The
curve (Cl) is the pedal of (Cz) with respect 16 the pole:

(particular property).

The ground is the catenary y a a-cosh (%) and the hub moves

on the x-axis: =y = a* cosh (g)
X X
d d .
8 3J£ §Z =\J2 =X = Ar¢tan (sinh(3))

a cosh (%)

. 1
sinh (%) y os 6 = —=—
a - aosh (é)

then: tan ©.

N

finally: ’ a line.

cos ©
The line can roll on the catenary in such a way that the

locus of the pole is the x-axis.
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The ground is a2 line y-= a*x and the hub moves on the

X-~axis : Q -V = a'x

oofr @ [ @]

M
1
]
i
o
A:\ L - a.x ale = LO (5)
N X € 5 5%
‘then: em@ea the wheel is a logarithmic spiral.

(Other examples are presented at the end of the article.)

Radials and Mannheim's curves

The Radial of a Curwe

If we commence at the origin, O, in a direction-conserving
manner and carry out the radius of curvature of a given curve
(C), the locus of the other extremity is the Radial of (C).

R, = f(q)) - polar equation ()

Mannheim's curve

Ceasaro proposed an intrinsic system of coordinates which
uses the radsus of curvature: R, and the arc length: s, as
measured from an initial point on the curve. In these intrinsic

coordinates the form of the equation is: g(R,s) = O
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We can interpret this last equation in the rectangular
coordinates (A, x, y ) without changing the form of the equation
g(y,x) = 0, That gives a new curve (C') called Mannheim's

curve of (C).

It is important to notice
1) +that y corresponds to R and
X corresponds to s in the intrisjc equations.
2) changing the reference system must be discerned as
a real transformation even it the equation is congervative.

All this leads to the following property:

Theorem : The radial of a curve (C) is that wheel formed by
the adaptation of Mannheim's curve of (C) taken as the ground.
In other words, together the Mannheim's curve and théa Radial

of (C) constitute a ground-wheel couple of correspondence.

Here is an example : (C) is the evolute of a circle

—> (¢)

x w af{cos® ~ © gin 6 )

v = a(8in © - © cos 0 )
R = 2+a:s8 1is the intrinsic equation. :
- The radial of (C) is Archimede's Spiral: = a-©

- The Mannheim's curve of (C) is the parabola: y2 = 2+a'X
andywe again meet the result discovered by mathematicians
in the 17th céhtury. : i
Gregory's transformation also gives ‘the radial of :a plane |

curve when we khow the intrinsic equation: g(R, 8) = 0.
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At the end of this quick cursory glance of the adaptable
wheels theory and Gregory's transformation we can ask a practical

question: what is the use offiisuch an adaptable wheel?

We have t0 notice that the circular wheel is the simplest

of the adaptable wheels:
- the ground is a horizontal line y = a

- the wheel is the circle = a; 6 =&

a
/
\‘ 0
{
1 >4
A e - P ’//774'///,,4/;,,,,

An adaptable wheé&l could come back to the circular shape

when it is necessary, for example, to travel on our roads.

However it could take the ski-shape to go down gnowy slopes!

of course,-there are some technical problems to resolve
before it i$ possible to produce adaptable wheels, but there is
no major difftculty.

Jome mechanical systems could make a2 compromise between
the adaptable wheels and articulated or telescopic 1limbs °

(this would allow for the possibillity of reversible movement).
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A possible configuration may be a hub that would be surrounded

by a few telescopic limbs with a flexible foot at the extremity.

This system, technically simpler thamithe continuous
adaptable wheel, ié very gimilar. to human legs that have an
articulation at the place of the hips. With wheéls of this
type and an electronicdl detector able to explore the ground

before it, a vehicle could move on a ground of uneven rocks.

- Articulated limbs -

Nevertheless the traditional wheel, due to its simplicity
and strength, will continue its dong careérl New solutions

would meet applications only in limited and varticular fields.

C. MASUREL, LILIE




