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Abstract

Caustics by reflection and curves of direction have, when algebraic as
shown by Laguerre and Humbert, a rational arc length. Examples of low
order caustics are drawn with help of geometric definition of catacaustics.
For conics the caustic is in general of order 6. We present links with classes
of curves of direction studied by Cesaro, Balitrand and Goormaghtigh in
NAM between 1885 and 1920.

1 Plane caustics by reflection.

Caustics of plane curves are defined as the envelope of the light rays coming
from a ponctual source and reflected or refracted in a given curve. We only
study in this paper the first type of caustics (reflection) and never caustics by
refraction so we drop the precision and call them caustics.
Caustics by reflection (sometimes called catacaustics) seem to go back to Tschirn-
hausen and his paper of 1682 but Apollonius knew some properties of foci of
conics (the light rays from a focus converge in the other focus). For the parbola
: parallele rays to the axis of symetry from infinity converge at the only focus,
which is a caustic.
Two cases of caustics can be distinguished :
- Light rays coming from a ponctual source of light at finite distance,
- Light rays coming from a point at infinity,
In the first case light rays diverge from a point and in the second light rays are
parallele.
The transformation of the initial curve is a tangential transformation that maps
tangents of the first curve to tangents of the caustic. The two envelopes are
associated curves.
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Geometers have found simple constructions to draw the curves from the tan-
gents of the given curve. The light point is a special point of the caustic since
its position with respect to the initial curve defines the form of the resulting
caustic. An orthogonal trajectory for the reflected rays is called the catacaustic,
the evolute of this catacaustic is the searched caustic. It is well known that for
ponctual light source a catacaustic of a given plane is the dilated (k=2) pedal
of the given reflecting curve. The evolute of the dilated pedal is the caustic.

Figure 1: Central caustic of a curve

For a source of light at infinity in y-axis direction the construction is a little
different : project the current point of the reflecting curve at H on the x-axis
orthogonal to the direction of the light rays. The symetric of H wrt to the
tangent at the current point describes the catacaustic the evolute of which is
the caustic.

Figure 2: Caustic of a curve for parallele rays to y-axis
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2 Caustics by reflection of conics : light point
at finite distance.

The non-degenerate conics are the first class of simple curves in the plane :
algebraic curves of order 2 and class 2 when non degenerate. It has been proved
that in general case the caustics of conics are curves of order 6. Among the
examples quoted by G. Humbert are the Nehphroid, the caustic of a circle for
parallle rays, the astroid, caustic of a deltoid for parallle rays. The formula for
computing the maximum order of a caustic of an algebraic curve of order n in
general case - ie without special singularities or peculiarities that could decrease
the order - is :

Order of the caustic = 3.n.(n− 1)

For conics n=2 the caustics are of order 6, for cubics n = 3 the order is 18 and
for n=4 then the caustic has order 36. So caustics of algebric curves become
complicated special algebraic curves. In fact G. Humbert has given some classic
examples and the present paper tries to add new examples of plane caustics by
reflection. Caustics of conics are in general of order 6, but there are exceptions,
the catacaustic of the parabola which is tangent to the line at infinity, is of order
4 and class 3 - the class is the number of real or complex tangents to the curve
that can be drawn from a general point in the plane -. Class and order of conics
are in general 2.
The foci of conics are also the foci of catacaustics and of their evolutes the
caustics. That is a general property for catacaustics and caustics of algebraic
curves. Foci are the point circles of null radius bi-tangent to the plane curve or
equivalently the points from which we can lead two tangents through the two
circular points at∞ I, J described by the homogeneous coordinates (1, i, 0) and
(1, -i, 0) to the algebraic curve.

Figure 3: Caustic of the Circle : ponctual light at origin
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Figure 4: Caustic of the Circle : ponctual light at origin

Figure 5: Caustic of the Cardioid : ponctual light at origin

Figure 6: Caustic of the Deltoid : ponctual light at origin
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Figure 7: Caustic of the Astroid : ponctual light at origin

2.1 Some examples of caustic for light rays coming from
a point L (central caustics) at finite distance.

These are just listed here and can be verified using the above construction of
the caustic (CR) as evolute of the pedal (wrt to L) of the initial curve (C).

1 - (C) is a circle, L is a point on (C), (CR) is a cardioid.
2 - (C) is a cardioid ρ = cos2(θ/2), L is the cusp, (CR) is a Nephroid since
the pedal of the cardioid is Cayley’s sextic ρ = cos3(θ/3) and its evolute is the
nephroid.
3 - (C) is a circle, L is any point not on the circle, (CR) is an evolute of a Pascal
snail.
4 - (C) is a conic, L is any point not on the conic, (CR) is a curve of order 6,
the evolute of a bicircular quartic.
5 - (C) is a generalised sinusoidal spiral C1(n, p) :

ρ = tann u sinp u, θ = n tanu+ pu

L is the pole, (CR) is an evolute of the pedal given by p→ p+1 in the parametric
equations of (C).
6 - (C) is an hyperbolic spiral (n=1, p=0) : ρ = 1/θ, L is the pole, (CR) is
the tractrix spiral (n=1, p=1) so the evolute is curve of Catalan (see Part VI)
: ρ = 1

1−θ2 (see part VI).
7 - (C) is a generalised sinusoidal spiral C2∗(n, p) :

ρ = [
1

1− tan2 u
]n cos−p 2u, θ = n tanu− 2p.u

L is the pole, (CR) is an evolute of the pedal given by p→ p+1 in the parametric
equations of (C).
8 - (C) is the curve of Catalan (n=1, p=0) : ρ = 1

1−θ2 , L is the pole, (CR) is

the evolute of the curve (n=1, p=1) : ρ = cos2 u, θ = tanu− 2u - see Part III-.
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Finally we have equation of the central caustic : ρ = cosu
3−tan2 u , θ = tanu− u.

9 - (C) is a generalised sinusoidal spiral C3(n, p) :

ρ = [
cosu

3− tan2 u
]n sinp 3u, θ = n tanu− (3p+ n)u

L is the pole, (CR) is an evolute of the pedal given by p → p + 1 in the para-
metric equations of (C).
10 - (C) is The curve (n=1, p=0) : ρ = cosu

3−tan2 u , θ = tanu − u, L is the pole,
(CR) is the evolute of the curve (n=1, p=1) so the evolute of the following pedal
curve : ρ = cos2 u. sin 2u, θ = tanu−4u. I have no central parametric equations
ρ(u), θ(u) for the evolute of this pedal.

Figure 8: Central caustics of Ck(n, p) : ponctual light at origin

Some pictures shows different cases of conics (red), catacaustic (blue) and
caustic (beige).

Catacaustics and their evolutes, the caustics of ellipses for central or paralle

Figure 9: Central caustics of ellipses
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Figure 10: Central caustic of circle and ellipses

Figure 11: Central caustics of ellipses

light rays present in general two loops or two cusps linked by two arcs and no
points at infinity and no inflexion point. And since all involutes or evolutes of
this type of curve are of the same kind with two loops or two cups. It gives a
stability of forms for these kind of curves by transformations involute/evolute.

The end of this paper will be exclusively be concerned by cautics for paral-
lele light rays and the very closed relation to the important class of curves of
direction (CD) studied by E. Laguerre, G. Humbert and others in the Nouvelles
Annales de Mathematiques at the end of nineteenth century.

3 Caustics by reflection of conics : light coming
from ∞ parallele to y-axis.

3.1 A special case : the parabolic mirror.

In the case of the parabola it is well known since the greeks that the caustic of
the parabola for light rays parallele to the axis of the parabola is a point : the
focus F of this parabola. So a point can be assimilated to a caustic.
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Figure 12: Central caustics of ellipses

3.2 Some examples of caustic for light rays coming from
∞ parallele to y-axis.

These are just listed here and can be verified using the above construction of
the caustic (CR) as evolute of the catacaustic of the initial curve (C).

1 - (C) is a parabola (y = 1 + x2/4) (CR) is the focus of the parabola.
2 - (C) is a cycloid with base x-axis, (CR) is a cycloid twice smaller.
3 - (C) is a circle, (CR) is a nephroid.
4 - (C) is a parabola in any position except axis // to y-axis, (CR) is a Tschirn-
hausen’s cubic.
5 - (C) is a deltoid in any position, (CR) is an astroid. (see animation Astroid
on http://www.mathcurve.com/)

These three last cases are curious. If for the circle it is trivial since this curve
has a rotation symetry, it is not evident for the parabola and the deltoid. Are
there other similar cases ? Among cycloidals this particuliarity could rather be
often met.

For the catenary y = coshx :
Parametric equations of the catacaustic (Poleni’s curve) :

x = 2/ coshx y = x− 2 tanhx

Parametric equations of the caustic (evolute of Poleni’s curve) :

x = x− tanhx y =
1

2
[
2 + cosh2 x

coshx
]

For the tractrix :
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Figure 13: Caustic of the Deltoid : an Astroid

Figure 14: Caustic of the Catenary

x = u− tanhu y = 1/ coshu

Parametric equations of the catacaustic :

x = u+ tanhu− 2 tanh3 u y = 2[
sinh2 u

cosh3 u
]

Parametric equations of the caustic (evolute of the previous curve):

x = u− tanhu+ tanh3 u y =
1

2
[coshu− 1

coshu
+

2

cosh3 u
]
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Figure 15: Caustic of the Tractrix

3.3 Caustic of the parabola in general position.

When light rays come from any direction in the plane exept the one parallele
to the axis of the parbola then the caustic is the Tschirnhausen’s cubic (TC) -
see part IV -.
The catacaustics that appear in the above construction are evolutes of the TC
and are the curves called cubic hypercycles by Laguerre.
If the Tschirnhausen’s cubic is given by equations : x = 3.t2 and y = 3.t− t3 its
arc length is s = 3t+ t3 then the parametric equations of the cubic hypercycles
or parabola catacaustics are :

x1 =
4t3 + b(1− t2)

1 + t2

y1 =
t2(t2 − 3) + 2bt

1 + t2

Its element of arc length is a rational espression (as an involute of a CD) :

ds1 = 2.
b− t(3 + t2)

1 + t2
.dt

3.4 Caustic of the ellipse x2/a2 + y2/b2 = 1 for light rays //
to y axis.

For an ellipse x = a cos t and y = b. sin t centered at O and axis Ox an Oy
the catacaustic is a symetric curve and is given by the following parametric
equations (with help of a software) :

x1 = a cos t+ 2ab2 sin t2 cos t/(a2 sin t2 + b2 cos t2)

y1 = 2a2b sin t3/(a2 sin t2 + b2 cos t2)
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Figure 16: Catacaustics of parabola

Figure 17: Catacaustics of parabola

And the caustic is the evolute of the catacaustic, its parametric equations are :

x2 = (a cos t(2a2 sin t2+b2(2 cos t2+(4−a2−5b2+(a−b)(a+b) cos 2t) sin t2)))...

.../(2(b2 cos t2 + a2 sin t2))

y2 = −(b(−3a4+11b4−8a2(−2+b2)+4(a4+3b4+2a2(−2+b2)) cos 2t+(−a4+b4) cos 4t) sin t)...

.../(16(b2 cos[t]2 + a2 sin t2))

(to be verified) The arc length of the catacaustic is given by a rational formula
in sin t and cos t so in x and y :

ds1 =
a(3.b2 + (a2 − b2) sin t2). sin t

b2 cos t2 + a2 sin t2
.dt
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3.5 Caustic of the hyperbola x2/a2−y2/b2 = 1 for light rays
// to y axis.

For a hyperbola and equations : x = a. cosh t and y = b. sinh t there are corre-
sponding formulas with the following expression for the rational arc length of
the catacaustic in this special case :

ds1 =
a(−3b2 − (a2 + b2) sinh t2). sinh t

b2 cosh t2 + a2 sinh t2
.dt

(to be verified)
Some cases of caustics for inclined parabola, ellipse and hyperbola are shown.
In each picture the three curves are traced : the conic, the catacaustic and its
evolute the caustic. The foci of the conics are also the foci of the catacaustic
and of the caustic. This property is true for algebraic plane curves in general.
Since the caustics of cubic are in the general case of order 18 it seems out of
range to study these curves even with help of software so we will not go futher
in this too complicated path.

Figure 18: // rays of light : caustic of ellipses

4 Curves of direction (Laguerre).

These curves have special properties. They are rational plane curves with an
arc length expressed by a rational formula. A point can be assimilated to CD
of class one.
The curves of direction of order 2 and class 2 are the evolutes of the point : the
circles.
The next one of order 3 and class 4 is the Tschirnhausen’s cubic (TC) and has
a rational arc length.
The cubic hypercycles are CD of class 3 and order 3 and are evolutes of the
(TC). The general hypercycles are CD of order 6 and class 4. Examples are the
Nephroid, the astroid, the oblique astroid. We recall the one of an harmonic
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Figure 19: // rays of light : caustic of ellipses

Figure 20: // rays of light : caustics of ellipses

system : two couples of semi-lines (with direction) (A, A’) and (B, B’) form
an harmonic system if they are tangent to a same cycle and if contact points
divise harmonically the cycle; A’ is the harmonic conjugate of A wrt the couple
of semi-lines (B, B’).
The definition of hypercycles is given by Laguerre in a paper ”on the hypercy-
cles (1882)”. The hypercycle is defined by the following property : harmonic
conjugates of a semi-line in the plane wrt couples of conjugate tangents have
for envelope a circle K. Laguerre presents two interessant classes : the cubic
hypercycle (class 3) and the proper hypercycles (class 4). The cubic hypercycle
is the only curve of direction of class 3, circular quartic of class 3 tangent to
the line at infinity. Cubic hypercycles are the catacaustics of the parabola for
parallele light rays.

Fondamental properties of the curves of direction (CD) are the followings :
- If the evolute of a curve is a CD then the curve is a CD (G. Humbert).
- In general the involute of a CD is a CD and a parallele curves of a CD is a
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Figure 21: Parallele rays caustics of circle and ellipses

CD (G. Humbert).
Any curve of direction is a catacaustic of an algebraic curve for parallele inci-
dent rays and in the other way any catacaustic of an algebraic curve is a curve
of direction (E.Laguerre).

A tangential equation in (u,v) is a relation that defines the curve as the en-
velope of a line u.x + v.y = 1. The general equation in tangential coordinates
(u, v) for curves of direction is :

(u2 + v2).F 2(u, v)− Φ2(u, v) = 0

where F and Φ are integer polynomials in (u,v). Hypercycles are of class 4 or 3
and have the following tangential equation :

(u2 + v2).(α.u+ β.v + γ)2 − (A.u2 + 2Bu.v + C.v2 + 2D.u+ 2E.v)2 = 0

The tangential equation of the Tschirnhausen’s cubic is :

w2(u2 + w2) = [p(u2 + v2 + uv)]2

Humbert has given some infinite classes of curves of direction :
Sinusoidal spiral (ρn = cosn.θ) with n = p/q :

ρ = cosp/q
[(q
p

)
.θ
]

for odd p, q ∈ N p ∩ q = 1

5 Cesaro curves

These curves can be defined (R is a real length) by :

[ρ2 −R2](n+1) = a2n.ρ2. sin2 V
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the polar equation :

dθ =
(ρ2 −R2)(n+1)/2

ρ.
√
a2n.ρ2 − (ρ2 −R2)n+1

dρ

and the equation for the radius of curvature:

Rcurv. =
an

(n+ 1).
√

(ρ2 −R2)n−1

Two known subclasses of these curves correspond to sinusoidal spirals (R=0) and
Ribaucour curves (R =∞). All intermediate cases are associated to 0 < R <∞
and include cycloidals as special cases.
The radius of curvature can only be infinite or null on the circle ρ = R which
can be cut only orthogonally by the Cesaro’s curves so inflexions and cusps are
on the circle ρ = R.

Cesaro curves are functions of two parameter λ, µ and have been studied in
his book on intrinsic plane geometry and in NAM by Balitrand, Turriere and
others. In (4) Cesaro gave some properties of his curves. And in (8) Goor-
maghtigh published a synthesis paper that lists many caracteristics of these
curves, generalising Ribaucour curves and sinusoidal spirals. But he used pa-
rameters different from those used by Cesaro in (4).
The intrinsic equation of Cesaro curves is :

s =

∫
λ√

(ρ/a)µ − 1
dρ

In this equation ρ is the current radius of curvature, s is the arc length from
a given origin and the parameters λ and µ are constants. If µ= -2 we have
cycloidals. If µ= -1 we have parallele curves to the cycloidal with same λ. Cesaro
mentions also the alysoides µ = 1, the catenary if λ = 1, the catenary of uniform
strength (µ = 4, λ = ±3), the lemniscate de Bernoulli ((µ = 2/3, λ = ±1/3), the
sinusoidal spirals (±λ = µ − 1) and Ribaucour curves (±λ = (1/2)µ 6= 1), etc.
Cesaro in (4) also defines 3 sub-classes of his curves by a dilation, in a constant
ratio from the current contact point, of the osculator circle.
He distinguishes 3 cases :
-1- Dilated osculator circle passes through a fixed point −→ Sinusoidal spirals.
-2- Dilated osculator circle is normal to a fixed line : −→ Ribaucour curves.
-3- Dilated osculator circle is tangent to a fixed line : these when algebraic are
curves of direction presented in the two sections below.
The above Cesaro intrinsic equation is a mine of special curves with interesting
properties and it is possible to find solutions (by elementary functions) for small
integer values of λ and µ.
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6 Grounds for curves C2∗(n, p) are catacaustics
of Ribaucour curves.

The Ribaucour curves are defined as curves such that the radius of cuvature is
cut by x-axis in a constant ratio k. We have seen (Parts I and III) that sinu-
soidal spirals are wheels for Ribaucour curves. If the sinusoidal spiral wheel rolls
on the symetric side wrt the current tangent the pole describes a catacaustic
of the Ribaucour curve and this catacaustic is a ground for the corresponding
curve in the class C2∗(n, p) and base-line. This way it is possible to generate
catacaustics which are also the envelopes of the circles centered on a Ribaucour
curve and tangent to the base line.
Example of the caustic of the cycloid :

Figure 22: Y-axis parallele rays caustic of the Cycloid

7 A special class of Cesaro curves

Cesaro in (4) and Goormaghtigh in (8) study the curves such that the osculat-
ing circle dilated from the current point in a constant proportion k is tangent
to a fixed line in the plane. These curves are just the one mentioned at the
preceeding section and when algebraic are curves of direction.
This class of curves corresponds to Cesaro curves when λ = µ 6= 1.
The ratio k is the inverse of corresponding index of the Ribaucour curve.
→ k=1 is the circle since the homothety of ratio 1 is the identity : it keeps
tangency with any tangent.
→ k=-1 is the Tschirnhausen’s cubic TC see (Part IV), the homothety is a sym-
metry wrt the current tangent. The symmetric of the osculator circle is tangent
to the directrix of the TC.
→ k=2/3 is the Nephroid. The locus of the centers of osculator circles dilated in
the ratio 2/3 is the fixed circle and dilated circles are tangent to the diameter,
classic property.
→ k=1/2 is an evolute of the cycloid. The osculator circles dilated in the ratio
1/2 is tangent to the base/directrix of the initial cycloid.
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→ k=2 is Poleni’s curve (or ”courbe des forcats”). The osculator circle dilated
in ratio 2 is tangent to the directrix.

This article is the 12th part on a total of 12 papers on Gregory’s transfor-
mation and related topics.

Part I : Gegory’s transformation.
Part II : Gregory’s transformation Euler/Serret curves with same arc length as
the circle.
Part II : A generalisation of sinusoidal spiral and Ribaucour curves.
Part IV: Tschirnhausen’s cubic.
Part V : Closed wheels and periodic grounds
Part VI : Catalan’s curve.
Part VII : Anallagmatic spirals, Pursuit curves, Hyperbolic-Tangentoid spirals,
β-curves.
Part VIII : Translations, rotations, orthogonal trajectories, differential equa-
tions, Gregory’s transformation.
Part IX : Curves of Duporcq - Sturmian spirals.
Part X : Intrinsically defined plane curves, periodicity and Gregory’s transfor-
mation.
Part XI : Inversion, Laguerre T.S.D.R. - Polar tangential and Axial coordinates.
Part XII : Caustics by reflection, curves of direction, rational arc length.

There are two papers I have published in french :
Quand la roue ne tourne plus rond - Bulletin de l’IREM de Lille (No 15 - Fevrier
1983).
Une generalisation de la roue - Bulletin de l’APMEP (No 364 juin1988).
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