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Abstract

We recall some properties of cycloidal curves well known for being
defined as roulettes of circles of fixed radius and present a generation
using using variable circles as a generalisation of traditional roulettes
and a different approach of these well known curves. We present two
types of associated epi- and hypo-cycloids with orthogonality proper-
ties and give a new point of view at classical examples. We describe
couples of associated cycloidals that can rotate inside a couple of cy-
cloidal envelopes and stay constantly crossing at right angle.

1 Epicycles and Cycloidals :

Astronomy has used epicycles for a long time to describe, before Kepler
and Newton, the motion of planet in the ptolemaic system. This theory of
epicyles was not really explanatory and imposed to use the composition of
circle motion (epicycles) to complete the description of the trajectory.
Rolling curves in the plane (or roulettes) used to study only curves assim-
ilated to rigid objects. These roulettes, as the well known cycloid, were
studied by many mathematicians of sixteenth century : Pascal, Huygens,
Roemer, La Hire, Mc Laurin, and many others.
They present individually a great number of geometric properties and col-
lectively other fascinating particularities generated by the rolling of circles
or by envelopes of moving circles in the plane. We can find on the web
many pages about cycloidal curves with supernatural properties isolated or
collectively with special motions that seems nearly impossible - see exam-
ples on (9), (10), (11) web pages -. All are generated by only rotation and
rolling of circles on other circles. The cycloidals generated, when algebraic
- so generated as roulettes by two circles (fixed and rolling) with radii in a
rational ratio - have wonderful geometrical specificities studied since a long
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time for their surprising behavior.
In this paper we will often use the name ”cycloidals” for all the curves either
epi- or hypo-cycloids and are plane curves.

2 Complex of rotative cycloidal gears with tan-
gential contacts.

A roulette is the trajectory of a point attached to a rolling circle (radius =r)
on a nother fixed circle (radius = R). If the ratio = R/r = m/n in Q| m and
n integers, then trajectories are closed algebraic cycloidals or trochoidal.
The very special properties of these cycloidals permits to generate the com-
plex choregraphy of cycloidals moving tangentially on each other with cusps
stay on their corresponding cycloidal and all seems to be a miracle. F. Mor-
lay (1) in a paper (1894) gives a large overview of the phenomenon with
many figures. M. Frechet (2) in a paper (1901) presents ellipses rolling in-
side deltoids . W. Wunderlich (4) generalizes to other trochoidals (1959).
And P. Meyer (5) recalls these interesting references (1967), completing the
picture including the extremal cases of the Cycloid (fixed circle is a line)
and evolute of the circle (rolling circle is a line). Let us note that in these
papers the curves are moving curves most often have a tangential contact
with others and are sliding and not rolling without slipping.
We will see that there are also examples of moving cycloidals that maintain
during the motion orthogonality at crossing points (instead of tangential
contact).

3 Roulette of a variable circle rolling on a line.

We present now a sort of cycloid but the rolling circle has not a constant
radius but is a function of a parmeter t. It is possible to define the motion
of a point on the circle by an angle which is an integral of the elementary
angle : dx(t)/R(t).
A curve is defined in the plane in an orthonormal system (xx’Oyy’) - by a

variable circle rolling on the xx’ axis with radius y=R(x) - or parametric: y
= y(t) = R(t) and x=x(t), with usual hypothesis for the function (smooth or
with isolated simple singularities). The value x is the integral of the radius
of the variable circle length from x(to) and current point x(t) so we have
the two relation :

x(t) = s(t) =
∫ t
toR(u)du (1)

θ(t) =
∫ x
xo dθ =

∫ x
xo

dx
y =

∫ t
to
dx(u)
R(u) (2)

2



Figure 1: Trajectory of a point attached to a variable circle rolling on x-axis
with center on a parabola.

so θ it is the cumulative angle of rotation of the variable circle and x(t) is
the integral of the arc length of the variable circle between to and current
point t. Note the analogy with equations defining Gregory’s transformation
(see Part I).

3.1 Roulette of a point attached to a variable circle.

We can define a generalized roulette on line x’x of a point sticked on the edge
of a variable circle. The position of the point during the motion depends
only of the cumulative angle indicated above. We say that the point is
”angulary attached” and this means that the moving point is at distance
R(t) from its center in the direction given by θ. The center of the circle is on
the curve (x(t), y(t)=R(t)). The coordinates of the trajectories of attached
points to this variable rolling circle are :

XM = x(t)−R(t) sin θ(t) (3a)

YM = R(t)[1− cos θ(t)] (3b)

We can consider these equations as a generalization of the cycloid, or as
another way to look at Gregory’s transformation for which the wheel has a
variable radius and the trajectory of the center defines the curve.
This is a kind of polar system since s is indirectly defined by the angle θ and
a length R(t) at the point of contact of the circle on the x-axis.
The formulas (1) for x(t) and (2) for θ(t) are complementary they just link
the rotation to the translation in an integral form.
This case can be generalized to the rolling of variable circles or general
roulettes of variable circles on any plane curve instead of the line like above.
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The equations can be adapted to take in count the additional constraints,
but are appreciably more complicated.

These equations are often used when the locus of the center is a given
curve : [ x(t), y(t)= R(t) ], so only θ(t) needs to be computed.

3.2 The variable circle is centered on x2+ y2 = 1 and tangent
to x-axis.

To illustrate this we shall examine a simple classical example that will show
the way to a generalization. Suppose the center of variable circle stays on
the circle x2 + y2 = 1 (or x = sin t and y = cos t) and keeps tangential to x-
axis. So y = R(t) = cos t and x =

∫ t
toR(u)du =

∫ t
to sin(u)du = cos t− cos to.

The parameter t is the polar angle at the center of the fixed circle. When
t=to=0 the circle has radius 1 and is tangent to x-axis at O and when
t = π/2 the circle with null radius is the points (-1,0) or (1,0). An elemen-
tary rotation of the variable circle is dθ = dx

y . The rolling variable circle for

intermediate position t=t, the angle is φ =
∫ t
0

dx(u)
R(u) so in this particular case

(where x’(t)=y=R(t)): φ =
∫ t
to

cosu
cosudu = t− to which is just the length from

starting point to the point of tangency of variable circle with the x’x-axis.
At the begining the circle is at its maximum radius then R=1 and the angle
of the position of the point attached to the variable rolling circle is φ = 0
the position of this point when the variable circle rolls is given by the above
equations for XM , YM .
The equations in this case are the ones of a cadioid rotated with cusps on
x-axis and passing through the points -1 and +1 on the same axis (see fig.1):

XM = cos t sin(t− to) + sin t

YM = (1− cos(t− to)) cos t
The variable circle has for envelope two cycloidals : the nephroid and the
2-hypocycloidal that is also a part of x-axis or a flat ellipse (its total length
is 4).
We will see it is possible to extend these facts to many configuration of cy-
cloidal envelopes. And any smooth couples of curves envelopes tangentially
generated by a variable circle which moves on a given curve in the plane
as presented by J. Boyle in paper (7) for caustics by reflexion in the plane.
These caustics can be generated by rolling variable circles. He gives among
others the examples of the caustic of an ellipse, the astroid as the caustic of
the deltoid, and of the Tschirnhausen’s cubic as the caustic of the parabola

4



Figure 2: Trajectory of a point attached to a variable circle rolling on x-
axis with center on circle x2 + y2 = 1. On the right the variable circle is
represented at the current point (t=t).

when parallele light rays are coming from any direction.

We present now two types of associated cycloidals.

4 Couples of associated cycloidals envelopes with
same cusps and same fixed base circle :

The first case of association of cycloidals is just the correspondance between
an k-Epi- and an k-hypo-cycloids (k=common number of cups): The moving
circle of same radius (r) can roll inside or outside the same fixed circle.The
fixed circle (R) is called the base circle.
It is important to notice that, for each value of k (integer), there is an infinite
number of epi-/Hypo-cycloids with k cusps.

Figure 3: 4 couples of Epi-/Hypo-cycloidals with same cusps. Ponctually
generated by circle (r) rolling on circle (R).
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We suppose now that m = R/r = p/q is the integer or rational ratio
between the two circles radii.
These two cycloidals can also be generated tangentially by a variable circle.
Its center moves on the fixed base circle at angle t from Ox and its radius
is given by formula Rv = 2.r. sin(R.t

r.2 ). Then it can be shown that the two
points where the circle touches its envelope are on each of the two associ-
ated epi/hypo-cycloidals with same cusps. Points of contact are symetrical
w.r.t. the tangent to the fixed circle at the center of the generating variable
circle. This can be seen intuitively seen as the envelopes of a pulsating circle
centered on a fixed base circle and moving with constant angular speed.

Figure 4: 4 couples of Epi-/Hypo-cycloidals with same cusps tangentially
generated by circle Rv = 2.r. sin(R.t

r.2 ) centeredon the base circle.

5 Couples of associated ortho-cycloids with same
rolling circle inside a corona :

We present another way to associate two cycloidals.

A classical property of cycloids (trajectory of a point on a circle rolling
on a line) is the following : The orthogonal trajectories of cycloids translated
along their base line are equal cycloids generated by a circle rolling on the
common tangent at the summits.

At an intersection point the two ERC (elementary rotation center) are
on a same radius from this center and is a diameter of the same rolling cir-
cle. They are on each end of this diameter so the tangents are orthogonal
at each intersection of corresponding cycloidals (fig.4).

In the next section we shall see this property can be generalized to cy-
cloidals if we choose the appropiate couple of these curves.
We will below be interested by the trajectories of all points attached to the
rolling variable circle.
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Figure 5: Couple :↔ Orthogonal cycloids for tanslation instead of rotation

5.1 Couples of linked Cycloidal curves as orthogonal profiles
for rotation around O

This time we choose two concentric circles (m) and (n) of radii : m and
n. We suppose m and n (m > n) are integers (or even rational numbers)
and the third circle of radius r=(m-n)/2 (the locus of centers is the mid-
circle (m+n)/2). The circle of radius r=(m-n)/2 can roll on each of the first
circles, and any point on the edge will describe a k-epi- or k-hypo-cycloid
entirely situated in the corona between the two circles (R1 = m,R2 = n).
We consider the two cases where the moving circle rolls inside the great cir-
cle (m) or outside the small circle (n). In the first case the points describe
an hypocycloid and an epicycloid in the last case. The two associated curves
generated by the same rolling circle have an important property similar to
the one above for cycloids - and translation parallele to the base - generalized
to cycloidals. By the same argument used above for orthogonal cycloids and
translation, we can prove that the two Epi-/Hypo-cycloids are orthogonal
trajectories for the rotation around O.

5.2 Orthogonal epi- Hypo-cycloids in a corona:

In an orthonormed coordinate system x’xOy’y we choose three fixed cir-
cles (R) and (R±r) centered at O - and (r) - the rolling inside the corona
between the two circles (R±r). We consider two motions : (r) rolling on
and inside (R+r) generating an Hypocycloid and (r) rolling on and outside
(R-r) generating an Epicycloid. The fixed circle (R) is the base circle. All
points on circle (r) when rolling without slipping describe the same epi- or
hypo-cycloids just rotated by any angle around O.
We choose a rational number m = p/q with p, q ∈ Z/p∩q = 1 the parameter
that is the caracteristic of the our special cycloidals. We define the fixed
base circle of radius m centered at O in the system of axes x’xOy’y. We
define two other fixed circles center in O : (C1) of radius : m− 1 and (C2)
of radius m+ 1 and two couples of rolling circles : one of radii 1 with center
on the fixed circle. This last circle will roll - externally - on (C1) generating
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an ⊥-epicycloid and -internally- on (C2) generating an ⊥-hypo-cycloid.
The Hypocycloid has (p+q) cusps and the Epicycloid | p − q | cusps. The
same result can be obtained using the alternative generation of Lahire. Since
the inverse values m and 1/m lead to the same geometric results up to a
dilation (1/m) from O, we will keep m.
The equations of these associated cycloidals are :

X1(t) = m cos t+ cos[−mt]

Y1(t) = m sin t− sin[−mt]

X2(t) = m cos t+ cos[−mt]

Y2(t) = m sin t+ sin[−mt]
For m=1/1 : ⊥-cycloidals are a right segment and a circle turning inside a
cardioid and passing through the cusp,
For m=2/1 or 1/2 : ⊥-cycloidals are the cardioid and the deltoid turning
inside 2-epi/2-hypocycloids,
For m=3/1 or 1/3 : ⊥-cycloidals are the nephroid and the astroid turning
inside a 3-epi/3-hypocycloids,
For m=p/q or q/p : ⊥-cycloidals are the (p-q)-epi and (p+q)-hypocycloids,
The two numbers for each generation correspond to the two Lahire genera-
tions of the cycloidals.

Figure 6: Couples : Cardioid/Deltoid (m=2/1), Nephroid/Astroid (m=3/1)
and 3-Epi/5-Hypocycloid (m=4/1)

6 Couples of same cusps cycloids and rolling vari-
able circle

We consider first the case of the classical cycloid generated by a point on
a circle rolling on a line. Two cycloids with same cusps and situated on
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Figure 7: Couples m=3/2, 6/1 and 5/2

each side of this line. The rolling circle is the variable circle centered on
the line and tangent to the two cycloids. If we impose that the variable
circle rolls on, say, the lower cycloid a point angulary fixed to the circle will
describe a cycloid translated with its cups on the lower cycloid and tangent
to the upper one. This cycloid will pass through the common cusps of the
two given cycloids. Equations of the two fixed envelope cycloidals (up and

Figure 8: Trajectory of a point angulary fixed to the variable circle ↔
translated of one of the inital cycloids.

down) with same cusps are :

x1(t) = R.t−R sin t; y1(t) = R−R cos t
x2(t) = R.t−R sin t; y2(t) = −R+R cos t = −y1(t)

Equations of the locus of the variable circle at position tp are cycloidals (3)
and (4):

x3(t) = R.t+ 2.R sin(t/2) cos((t− tp)/2)

y3(t) = −2.R sin(t/2) sin((t− tp)/2) (3)

x4(t) = R.(−t)− 2.R sin(−t/2) cos((−t+ tp)/2) + 4π

y4(t) = 2.R sin(−t/2) sin((−t+ tp)/2) (4)
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Figure 9: Couple :↔ Case of Orthogonal cycloids for tanslation. The two
cycloids translate in opposite direction and meet orthogonally at cusps.

The cycloidals (3) and (4) above translate, during the motion, in opposite
direction in such a way that they stay in the space between the same cusps
cycloidals and are constantly ortogonal when they pass through these fixed
cusps. And we will see that this property can be generalized to the associated
orthogonal cycloidals.

We shall see this property can be extended to all cycloidals generated
by a circle rolling on another fixed circle.
Note that at the cusps on one of the cycloidal the tangent is not normal to
this curve , because the radius is varying, as can be seen on the figures.
The curves generated by points on the variable circles are moving curves
inside the space between the two associated envelope cycloidals and pass
through the common cusps where the circle has radius = 0.

7 An example of Rolling variable circles : Line -
Nephroid - Cardioid -Deltoid

The nephroid is the envelope of a variable circle centered on a fixed circle
and tangent to a diameter. This circle rolling on x’x (=2-hypocycloid or
diameter) generates a cardioid rotating inside the nephroid (=2-epicycloid)
and passing through the cusps of the nephroid. If the variable circles rolls
on the nephroid this time we get a deltoid passing also through the cusps of
the nephroid keeping its 3 cusps on it.
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Figure 10: Rolling variable circle generating cardioid and deltoid inside a
nephroid.

Figure 11: Orthogonal cardioid and deltoid turning inside a nephroid. Dur-
ing the rotation the two moving cycloidals are orthogonal at the fixed cusps
of fixed envelopes cycloidals.

7.1 Curves generated by rolling circles or envelopes of cir-
cles:

In (7) J. Boyle proves interesting theorems about the generation of caus-
tics in the plane and the double envelopes of familes of circles. His paper
presents among others properties, the following :
”- Given a caustic Envelope (E) resulting from a given reflective curve α(s)
and radiant S there is a curve β(s) and a family of circles Cs that roll on β
without slipping such that each circle has a point that will trace the caustic
envelope as the circle roll”.
Caustics by reflection for parallele light rays can be generated by variable
rolling circles (the discriminant circle with radius 1

4Rc where Rc is the radius
of curvature of the current point of the reflecting curve.

Nota : This idea of J. Boyle in (7) is a generalization of the ”roulettes”
to a variable circle in a simple way using an integral angle defined by the
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ratio of two lengths ds
R .

R. Goormaghtigh (3) knew the interest of envelopes of families of circles. He
gave some theorems about these families from an initial theorem of Cesaro
(12) on the alignment of the centers of curvatures of thres curves : the one
decribed by the center of the variable circle (R=R(s)) and its two envelopes.
It would interesting to understand what is the geometric relation between
these two envelopes. Abel Transon’s concept of deviation with a logarith-
mic spiral is at the heart of the solution since the tangent point with second
envelope of the variable circle rolling on a curve coincides with the pole of
the osculating spiral - see (Part XVI)-.

Theorem (E. Cesaro - 1900) : If the variable circle touches its envelope
at the two points K1 and K2 then the centers of curvature I1 and I2 at these
two points are on a line that pass through the point where the envelope of
K1K2 touches its envelope. And this point devides I1I2 in the ratio of the
radii of curvature of the loci of K1 and K2.

Figure 12: Envelopes of families of variable circles with center on a given
curve C ↔ Cesaro’s theorem on the centers of curvature.
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Figure 13: Trajectory of a point angulary fixed to the variable circle ↔
rotating orthogonal Cardioid - Deltoid

Figure 14: Trajectory of a point angulary fixed to the variable circle ↔
rotating Astroid, and Nephroid.

And the property can be generalized to all the similar couples of associ-
ated orthogonal epi-/hypo-cycloids turning inside a couple of k-epi-/k-hypo-
envelopes cycloidals.
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8 Couples of same cusps epi/hypo-cycloids and
rolling variable circle

We use the variable circles centered on the fixed circle of cycloidals and
tangent to the k-epicycloid and the k-hypocycloids. When the circle rolls
without slipping on one of these curves a point ”angulary” fixed to the vari-
able circle describes an epicycloid when rolling on the hypocycloid and an
hypocycloid when rolling on the epicycloid. It is important to notice that
the variable circles turn around in opposite angular direction.

8.1 Couples cardioid/point envelopes and circle/line as ortho-
cycloidals and rolling variable circle

In this example one of the envelopes is reduced to a point (the cusp of the
cardioid) and the other is a cardioid. The two ortho-cycloid are a circle
passing through the cusp and tangent to the cardioid and a right segment
passing at the cusp, and at the center of the circle and keeping ends on the
cardioid.

Figure 15: Couples cardioid/point envelopes and circle/line as ortho-
cycloidals.
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8.2 Couples 2-hypocycloid/nephroid envelope and cardioid/deltoid
as ortho-cycloidals and rolling variable circle

Another example is given by the nephroid and the 2-hypocycloid which is
the flat ellipse between the two cusps (a diameter of the fixed circle). The
variable circle are centered on the fixed circle and tangent to x-axis, its ra-
dius is r = sin t. The curve described by a point ”angulary fixed” to the
variable circle rolling without slipping on the diameter is a cardioid (as seen
in parag. 3 above) and the curve described similarily by the circle rolling
on the nephroid is a deltoid. So it is the couple of curves defined above as
couples of orthogonal curves for rotation around the center O of the fixed
circle. The cardioid constantly passes through the two cups of the nephroid,
is tangent to the nephroid and its cusp stays on the 2-hypocycloid (the di-
ameter). The deltoid passes through the cusps of the nephroid, is constantly
tangent to the diameter and its 3 cusps move on the fixed nephroid. We
have seen above similar property for a couple of moving cycloids.

8.3 Couples deltoid/3-epicycloid envelopes and nephroid/astroid
as ortho-cycloidals and rolling variable circle

The next example is the couple of envelopes (deltoid and 3-epicycloids).
One can find on web sites animations [see (8) (9) or (11)] as example of a
couple of mirror curve and its caustic by reflection. For light rays coming
from infinity the caustic by reflection of a deltoid is an astroid and if we
change the direction of the rays this astroid turns inside the two cycloidale
envelopes.
The astroid and the nephroid are the corresponding couple of ortho-cycloidals
and can be generated by a variable circle rolling on these two curves gen-
erates a nephroid when rolling on the deltoid and an astroid when rolling
on the 3-epicycloid. The nephroid has its cusps on the deltoid an is tangent
to an arch of the 3-epicycloid. The astroid has its cusps on the 3-epicycloid
and is tangent to an arch of the deltoid. If we change the point by the angle
gap t2 on the variable circle all the positions can be obtained and permit
to draw animations using only circles with fixed radius as a moving by ro-
tation inside the two fixed cycloidals. An alternative animation can use an
angulary fixed point on the variable circle.
Equations of the two envelope Epi- and Hypo-cycloids (outside (R) and
inside (R) of the base circle) are :

X1(t) = R cos t+ 2.r sin[(R/(2r))t]. sin[t ∗ (2r +R)/(2r)]

Y1(t) = R sin t− 2.r sin[(R/(2r))t]. cos[t ∗ (2r +R)/(2r)] (1)
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X2(t) = R cos t+ 2.r sin[(R/(2r))t]. sin[t ∗ (2r −R)/(2r)]

Y2(t) = R sin t− 2.r sin[(R/(2r))t]. cos[t ∗ (2r −R)/(2r)] (2)

The following curves are the couple the orthocycloidals turning inside the
couple of two cycloidals with same cusps above. Equations of these locii
of a point attached to the variable circle at position tp rolling in opposite
rotation repectively on the first couple of Epi-/Hypo-cycloidals envelopes
above are:

X3(t) = R cos t+ 2.r sin[(R/(2r))(t)]. sin[(t− tp) ∗R/(2r)]

Y3(t) = R sin t− 2.r sin[(R/(2r))(t)]. cos[(t− tp) ∗R/(2r)]

X4(t) = R cos t+ 2.r sin[(R/(2r))(t)]. sin[(t− tp) ∗R/(2r)]

Y4(t) = −R sin t− 2.r sin[(R/(2r))(t)]. cos[(t− tp) ∗R/(2r)]

(Nota :The following paragraph needs to be improved)
These equations give means to draw all the curves in the figures of this pa-
per. The element of arc length of the envelope k-epicycloidal (1) and tangent
of the current tangent to the cycloidal are :

ds1 = 2.(R+ r) sin[
R

2r
t]dt; tan(θ1) = tan[

R+ 2r

2r
t]

The element of arc length of the envelope k-Hypocycloidal (2) is :

ds2 = 2.(R− r) sin[
R

2r
t]dt; tan(θ2) = tan[

2r −R
2r

t]

For the rolling variable circle

Rcircle = 2r sin[(R/2r)t]

centered on base fixed circle the element of arc is given by

ds1−circle = Rcircle.dθ1 = (2r +R) sin[(R/2r)t]dt

for rolling on cycloidal (Epi-envelope). The same size circle rolling in the
opposite sense

ds2−circle = Rcircle.dθ2 = (2r −R) sin[(R/2r)t]dt

will be used for rolling on cycloidal (Hypo-envelope). So we have the follow-
ing formulas :

dθ1 =
2r +R

2r
dt; ds1−circle = ds1 −R. sin[

R

2r
t]dt
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dθ2 =
2r −R

2r
dt; ds2−circle = −ds2 +R. sin[

R

2r
t]dt

These equations show that the resulting rolling is the composition of a the
movement of the center of the variable circle and a rolling of this circle
respectively on the envelope Epi-/Hypo-cycloidals above in the opposite
direction of rotation.

On this example we see that the tangents at cusps are not necessary

Figure 16: Progressive drawing of a the deltoid and cardioid. Orthogonal
cardioid and deltoid can turn inside a nephroid. The variable circles rolling
on fixed envelopes cycloidals once on the 2-Hypo and once on the nephroid
generate respectively the cardioid and the deltoid.

orthogonal to the fixed curve (as for the ”roulettes”) because the variation
of the radius modifies the trajectory. The rolling of the variable circle is
not exactly similar to the rolling of a constant radius circle. The angle
position on the variable circle varies continuously. And when the point
passes through the circle with radius zero, the angle position is conserved
(there is no angular discontinuity).

9 Final remarks.

This paper was inspired essentially by the two paper [R. Goormaghtigh (3)
and J. Boyle (7)], the first author for its investigations on specific properties
of envelopes of families of circles an the second for the new view on caustics,
and specially the theorems 1 ”caustics” and 2 ”envelope theorem”. These
envelopes of familes of circles certainly hide many other new properties wait-
ing to be discovered.
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mation and plane curves.
Part I : Gregory’s transformation.
Part II : Gregory’s transformation Euler/Serret curves with same arc length
as the circle.
Part III : A generalization of sinusoidal spirals and Ribaucour curves
Part IV: Tschirnhausen’s cubic.
Part V : Closed wheels and periodic grounds
Part VI : Catalan’s curve.
Part VII : Anallagmatic spirals, Pursuit curves, Hyperbolic-Tangentoid spi-
rals, β-curves.
Part VIII : Translations, rotations, orthogonal trajectories, differential equa-
tions, Gregory’s transformation.
Part IX : Curves of Duporcq - Sturmian spirals.
Part X : Intrinsically defined plane curves, periodicity and Gregory’s trans-
formation.
Part XI : Inversion, Laguerre T.S.D.R., Euler polar tangential equation and
d’Ocagne axial coordinates.
Part XII : Caustics by reflection, curves of direction, rational arc length.
Part XIII : Catacaustics, caustics, curves of direction and orthogonal tan-
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gent transformation.
Part XIV : Variable rolling circles, orthogonal cycloidal trajectories, en-
velopes of variable circles.
Part XV : Rational expressions of arc length of plane curves by tangent of
multiple arc and curves of direction.
Part XVI : Logarithmic spiral, aberrancy of plane curves and conics.
Two papers in french :
1- Quand la roue ne tourne plus rond - Bulletin de l’IREM de Lille (no 15
Fevrier 1983).
2- Une generalisation de la roue - Bulletin de l’APMEP (no 364 juin 1988).
There is an english adaptation.
Gregory’s transformation : http://christophe.masurel.free.fr or
http://christophe.masurel.free.fr/#s9
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