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Abstract

With help of Gregory’s Transformation and two plane isometries :
translations and rotations we examine the orthogonal trajectories of curves
with parameters x0 and θ0 and give some properties of families of curves
associated by the GT. By analogy with the families of sinusoidal spirals
and Ribaucour curves we present families of curves depending of Mc Lau-
rin index n.

1 Orthogonal trajectories of Ribaucour curves
for translation along x’x

The usual definition of Ribaucour curves is : cuves (C) in the plane such that if
the normal of (C) M cuts a fixed line x’x at I and C is the center of cuvature of

(C) at M the ratio MC
MI

= k, the index of the Ribaucour curve. We see from this
definition that x’x the base line is an axis of symmetry for the curves and we
must count symmetrical curves as solutions as well. The differential equation
of Ribaucour curves (Gomez Teixeira T. II) is (n ∈ Z) :

1 + y′2x − n.y.y′′ = 0 dx =
dy√

(y)2/n − 1

The sinusoidal spirals are wheels for the Ribaucour curves w.r.t. to the base-line.
This property gave the definition of generalized Ribaucour curves as grounds
for the curves Ck(n, p) which are a generalization of sinusoidal spirals.
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Orthogonal trajectories of Ribaucour curves translated along x’x are the evo-
lutes of these curves. This can be proved by a simple geometric argument using
the standard definition of these curves : if we name M the current point of this
Ribaucour curve, C the center of curvature on the evolute and I the point of
intersection of the normal in M with the base line x’x in the plane (fig.1).

Figure 1: Orthogonal trajectories of Ribaucour curves translated along x’x are
evolutes of R. C.

The above definition of Ribaucour curves is MC
MI

= k is equivalent to IM
IC

=
1

1−k with k 6= 1 . A dilation centered in I with ratio 1
1−k moves C to M and

transforms the evolute in a curve tangent in M to the line IC so cuts orthogo-
nally the Ribaucour curve at M since IC is the normal. The cusp of the evolute
is moved to a point on the line parallele to the base line tangent to the mini-
mum or maximum of the curve. When the point I moves along the base line the
transformed evolutes are all equals, cut orthogonally the Ribaucour curve at M
and are moved by a translation parallele to the base line x’x.

Figure 2: Cycloid and cycloid cusps upward are orthogonal curves for translation
along x’x
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k= 2 is the cycloid cusps on x’x, orthogonal trajectories corresponds to equal
symmetric cycloids (cusps upward) since the I-homothety ratio is 1/(1−k) = −1
(fig.2).
k= -1 is the catenary, orthogonal trajectories are I-homothetic of the evolute of
the catenary (ratio:1/2).
k= -2 is the parabola. The orthogonal trajectories are I-homothetic (ratio : 1/3)
of the evolute of the parabola so semi-cubic parabolas x−x0 = (2/3).(y− 1)3/2

(fig.3).

Figure 3: Parabolas and Semi-cubic parabolas are orthogonal curves for trans-
lation along x’x

A direct study of the specific case k=1 (the circle) shows that for the orthog-
nal curves of circles of constant radius 1 centered on x’x and translated parallely
to the base line is a double tractrix with x’x as common asymptote (fig.4).

Figure 4: Circles and Tractrix are orthogonal curves for translation along x’x

We will show that these curves (one cusp spirals) :

ρ = (1− n) cosn u θ = n.[tanu− u] (n 6= 1)

are wheels for the evolutes of Ribaucour curves with respect to the base line and
these one cusp spirals and the sinusoidal spirals are two families of orthogonal
curves turning around the pole O. Note that the involute of the circle and the
tractrix spiral are element of the class of one cusp spirals.

2 Parabolas/Hyperbolas n+1
n x = y

n+1
n and θ/n =

ρ1/n spirals

General Parabolic or Hyperbolic spirals belong to the general class of curves
C1(n, p), which depends on two rational parameters : n and p (see Part III for
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details) :

ρ = sin(p+n)(u)
cosn(u) θ = n tan(u) + p.u

If we take pedal index p=0 and Mc Laurin index n=n then :

ρ =
sinn(u)

cosn(u)
θ = n tan(u) + 0.u

ρ = tann u θ = n. tanu

or :

ρ1/n = tanu θ/n = tanu

or :

ρ = (θ/n)n

These parametric equations are normalized in such a way that tanV = tanu.
This is the subclass C1(n, 0) and from now we call them parabolic/hyperbolic
spirals.
In the same way we normalize the parabolas/hyperbolas in a plane xy. These
are grounds for the parabolic/hyperbolic spirals as wheels :

x− x0 =

∫
ρ.dθ =

n

n+ 1
.y

n+1
n and so tanV =

dx

dy
= tanu = t

or in a more symmetrical form :

x =
n

n+ 1
.tn+1, y = tn

2.1 Orthogonal trajectories of Parabolas/Hyperbolas

We search for the orthogonal trajectories of the parabolas/hyperbolas of equa-

tion n+1
n (x− x0) = y

n+1
n (n 6= 0, -1 not necessary integer) translated along x’x

by the distance x0. The equation of orthogonal curves obtained by the usual
method (dy/dx→ −dx/dy) is :

(x− x0) =
n

(1− n)
.y

n−1
n n 6= 1, 0

So the orthogonal trajectories of parabolas/hyperbolas are curves of the same
family.
n=2 is the semi-cubic parabola (the evolute of the parabola) : x−x0 = (2/3).y3/2

which has for orthogonal trajectories the parabolas x− x0 = −2.y1/2 with ver-
tical axis.
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n= 1 is a special case and corresponds to the parabolas 2p.(x − x0) = y2 with
p = 1. A specific computation leads to the orthogonal curves: y = e−p(x−x0),
exponential curves translated along its asymptote the x’x axis (see fig.5). The
two orthogonal curves have equal constant p subtangent (exponential) and sub-
normal (parabola).

Figure 5: Exponentials e−p.x and Parabolas y2 = 2.p.x translated along x’x are
orthogonal curves

2.2 Orthogonal trajectories of Parabolic/Hyperbolic spi-
rals

We search now for the orthogonal trajectories of n.(θ − θ0) = ρn spirals for
rotation around the pole O by angle θ0 in polar coordinates. The equation of

orthogonal curves obtained by the usual method [dρdθ → −
ρ2.dθ
dρ ] is :

n.(θ − θ0) = ρ−n n 6= 0

So the orthogonal trajectories of parabolic/hyperbolic spirals are curves of the
same family. If n=0 we obtain θ − θ0 = C (constant) so it gives lines passing
through O and orthogonal curves are circles with center at O.
n=1 corresponds to the spiral of Archimede θ − θ0 = ρ the orthogonal curves
are Hyperbolic spirals θ − θ0 = ρ−1. At a point of intersection two orthogonal
curves have equal polar-subnormal (Spiral of Archimede) and polar-subtangent
(Hyperbolic spiral).

2.3 Parbolic/Hyperbolic spiral wheels and parabolas/hyperbolas
grounds

As we have seen above using direct Gregory’s transformation (x =
∫
ρ.dθ, y = ρ)

the curves n.θ = ρn are wheels for grounds with equations :

x− x0 =
n

(n+ 1)
.y

n+1
n
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Figure 6: Archimede and hyperbolic spirals are orthogonal curves for rotation
around the pole

The grounds for parabolic or hyperbolic spiral wheels are parabolas and hyper-
bolas. A classic example is the spiral of Archimede θ = ρ wheel for the parabola
with axis as the base line. Gregory’s transformation and orthogonal trajectories
give the same families of curves.
For n=-1 the wheel is an hyperbolic spiral θ = 1/ρ. A specific computation
leads to an exponential ground y = e(x−x0), the asymtote is the base line x’x.
Al these examples illustrate the general dual properties at the heart of Gre-
gory’s transformation (cf part I) for curves in polar coordinate with pole O and
curves in orthonormal coordinates with base line x’x. Rotations around O and
translations along the base line x’x are dual elements.

Figure 7: Archimede spiral ρ = p.θ as wheel for the parbola ground : y2 = 2.p.x.
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Figure 8: Hyperbolic spiral as wheel for the exponential ground (base line :
asymptote).

3 Families of curves defined by Gregory’s tran-
formation and orthogonal trajectories

If y(t) is a smooth function we associate two curves in the plane one in orthonor-
mal coordinates (x, y) and the second in polar coordinates (θ, ρ) in the following
way with Y(t) a primitive of y(t) :

(x, y) = (

∫
y(t).dt, y(t)) = (Y (t), y(t)) and (θ, ρ) = (t, ρ(t) = y(t))

These equalities define a couple of associated ground and wheel associated by
Gregory’s transformation (direct GT). Or in the other way (GT−1) we need two
functions y(t) 6= 0 and x(t) :

(x, y) = (x(t), y(t)) and (θ, ρ) = (

∫
x′(t).dt

y(t)
, y(t))

We search orthogonal trajectories of curves moved by translation or rotation,
one for the ground-curves [x(t)−x0, y(t)] for translations along x’x axis and the
second for the corresponding wheel-curves [θ(t) − θ0, ρ(t)] for rotations around
the pole O.

3.1 Families of curves defined by translations, rotations
and differential equations.

From an initial family of curves we can associate by Gregory’s Transformation
and orthogonal trajectories three other families with x, y, θ, ρ and a parameter
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Figure 9: Orthogonal trajectories - Grounds and wheels

u proportional to V (= k.u).

Figure 10: Sinusoidal spirals (circle) and one cusp spirals (spiral tractrix) are
orthogonal trajectories : n=1

The differential equations are for :
- Ribaucour curves with is :

dx

dy
=

1√
y2/n − 1

= f(y) = tanV
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- Sinusoidal spirals is :

ρ.dθ

dρ
=

1√
ρ2/n − 1

= f(ρ) = tanV

3.2 Inversion of the wheel - Transformation ”T”

For grounds and wheels curves we set y = ρ = cosn u where the integer n is Mc
Laurin index. If we take the opposit index -n it is an inversion for the wheel
and so ρ → 1/ρ and θ → θ. The first differential equation of sinusoidal spirals
becomes with ρ→ 1/ρ and dρ→ −dρ/ρ2 :

ρ.dθ

dρ
=

−ρ2/n√
1− ρ2/n

= − tanV

With help of Gregory’s transformation (GT: x =
∫
ρdθ and y = ρ) we define

a new one ”T” = GT◦ (Inversion/O) ◦GT−1 on the ground C1 with its base
line x’x in the following way. First we take the associated wheel C2 by GT−1

then the inverted of this wheel in the inversion of pole O : C3. And to finish
we take ground associated to C3 by GT this gives ground C4. This is the
transmuted of an inversion of pole O by Gregory’s Transformation. We could
assimilate this transformation to an inversion with base line instead of pole O.
This transformation is an involution T 2 = Id.

Figure 11: ”T” : transformation from ground to ground

An example will illustrate this definition of ”T”. If C1 is a circle of Cardan
centered on x’x (x = sin θ, y = cos θ), C2 is the circle ρ = cos θ, the inverted of
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this circle is the line C3 : ρ = 1/ cos θ. The associated ground C4 is the catenary
y = coshx.
So the circle and the catenary are associated by ”T”.
The differential equation of Ribaucour curves and sinusoidal spirals indicated
by Gomez Teixeira are :

dx

dy
=

1√
y2/n − 1

= tanV

ρ.dθ

dρ
=

1√
ρ2/n − 1

= tanV

with the Mc Laurin index n. But transformation ”T” associates, for same n,
curves of the same family with y ≤ 1 = ymax to a curve with y ≥ 1 = ymin. We
just change y → 1

y and dy → −dyy2 so the new equation is :

dx

dy
=
−y−2+1/n√

1− y2/n
= − tanV

To replace n by -n of the Ribaucour curve is equivalent to apply transformation
T above and a Ribaucour curve with y ≤ ymax becomes a Ribaucour curve with
y ≥ ymin. A circle centered on base-line x’x becomes a Catenary, a cycloid a
parabola, and line y=constant another line parallele to x’x, etc...
A peculiar solution of the differential equation of Ribaucour curves depend on
initial conditions (x0, y0, V0) and parameter n :
1- If n < 0 then |y(t)| ≥ ymin the curves are above the y = ymin or under
y = −ymin since the definition of Ribaucour curves has the base line x’x for
symmetry.
2- If n ≥ 0 then |y(t)| ≤ ymax the curves are in the strip between y = −ymax
and y = ymax.
3- There are also the singular integrals of the differential equation : the lines
y = ±ymax or y = ±ymin that are enveloppes of the Ribaucour curves. And we
must consider these two lines as special solutions.

3.3 Orthogonal trajectories

For the orthogonal trajectories we need usual formulas :

dx

dy
−→ −dy

dx

ρ.dθ

dρ
−→ − dρ

ρ.dθ

The latter is equivalent to dρ
dθ −→ −

ρ2.dθ
dρ

If we apply this to the differential equation of Ribaucour curves and to the differ-
ential equations of the sinusoidal spiral the corresponding differential equations
(with separated variables) for orthogonal trajectories are respectively :

dx = −
√
y2/n − 1.dy
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ρ.dθ = −
√
ρ2/n − 1.dρ

The first one gives the evolutes of Ribaucour curves as we have seen above they
are the orthogonal trajectories of the Ribaucour curves translated along x’x.
The second equation has for solutions the one cusp spirals of class C1(n,−n) in
polar parametric coordinates :

ρ = cosn u θ = n.[tanu− u] + θ0

and these spirals are orthogonal to sinusoidal spirals turning around the pole
O.

dρ

dθ
=
− cosn+1 u

sinu
and ρ = cosn u

dρ

dθ
=
−ρ1+1/n√
1− ρ2/n

(n = Mc Laurin index) then :

dθ = −
√

1− ρ2/n
ρ1+1/n

.dρ = −(1/ρ).
√
ρ2/n − 1.dρ

This confirms the fact proved by a geomtric argument in the first section :
orthogonal trajectories of sinusoidal spirals turning around the pole are one
cusp spirals. These cusp spirals are wheels for the evolutes of Ribaucour curves
w.r.t. to the base.

3.4 Polarity w.r.t. a circle

Transformation ”T” is formally similar to the transformation by reciprocal polar
P with respect to a circle of center O which can be defined by the product
(pedal/O) ◦ (inversion/O, 1) ◦ (pedal/O). This polarity is also an involution
P 2 = Id and is conformal so the angle V is preserved for transformed curves
(mod a symmetry). For the curves Ck(n, p) (see part III) a polarity corresponds
to the changes n → −n and p → −p − 1 [pedal : (n, p + 1) and inversion:
(−n,−p− 1)].
An example in class Ck(n, p) : initial curve is the involute of the circle C1(−1, 0)
ρ = 1/ cosu, θ = tanu − u, pedal is C1(−1, 1) ρ = tanu, θ = tanu = ρ the
spiral of Archimede, the inverse is the Hyperbolic spiral C1(1,−1) ρ = 1/ tanu,
θ = tanu = ρ and the pedal is the tractrix spiral C1(1, 0) ρ = cosu, θ = tanu−u.

3.5 General form of differential equations for translations
or rotations

We list a few cases that can be found in the present paper or among special types
of generalized curves (cf Part III and VII). They correspond to cases where the
expression of ±dx/dy = tan ku or = 1/ tan ku. The parametrization by the pa-
rameter u proportionnal to angle V, preserved in Gregory’transformation, gives
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simple polar equations for the curves Ck(n, p).

We give the name of the family and corresponding differential equation in
(x,y) or (θ, ρ) which are in the form (n= Mc Laurin index):

dx = fn(y).dy for the grounds and dθ =
fn(ρ)

ρ
.dρ for the wheels and fn(t) = tanV

We give also natural for a parametrization with trigonometric or hyperbolic
functions : u a circular angle and α a hyperbolic argument [u = Gd(α)].
1- [Ribaucour curves - Sinusoidal spirals] :

fn(t) =
1√

t2/n − 1
= 1/ tanu = 1/ sinhα t = cos−n u t = coshn α

2- [evolutes of Ribaucour curves - One cusp spirals]

fn(t) = −
√
t2/n − 1 = − tanu = − sinhα t = cos−n u t = coshn α

3- [Pursuit curves - Anallagmatic spirals] :

fn(t) =
t2/n − 1

2.t1/n
=

[t1/n − t−1/n]

2
= sinhα t = en.α

4- [β−curves - Tangentoid spirals ]:

fn(t) =
2.t1/n

1− t2/n
=

−2

[t1/n − t−1/n]
= −1/ sinhα t = en.α

5- [Parabolas/Hyperbolas - Parabolic/Hyperbolic spirals ]

fn(t) = t1/n t = tanu

In this last class of curves orthogonal trajectories for translations along x’x axis
and rotations around pole O are curves of the same class.
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